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We propose a new approach to solving the problem on optimizing angular 
divergence of radiation which is based on calculations of the effective angular beam 
divergence from the data on distributions of the beam intensity and phase over the 
beam cross section directly at the exit from a nonlinear medium (an atmospheric 
layer) avoiding the use of a Fourier transform. It is shown in the paper that such an 
approach to the selection of a quality criterion makes the optimization much easier. 
Calculations of the optimal initial profile of a laser beam wave front made for a 
defocusing medium with the Kerr–type nonlinearity well agree with the data obtained 
using other techniques. 

 
As known, high–power radiation when passing through 

the atmosphere is subject to strong distortions.1 It is also 
the case when an atmospheric layer mainly brings about 
phase distortions which result in an increased angular 
divergence of a laser beam. Since in the far diffraction zone 
the angular intensity distribution has a complex structure 
due to nonlinear aberrations,2 its directional pattern is 
characterized by mean values: efficient angular divergence 
and position of the beam center of gravity in the far 
diffraction zone as well as by the higher–order moments. 

For efficient transport of high–power optical radiation 
through the atmosphere, it is necessary to keep a narrow 
laser–beam divergence. To this end one must reduce or 
totally compensate for the wavefront distortions. To do this 
an optimal control of light beam characteristics is 
accomplished which allows one to attain the best beam 
quality in the far diffraction zone, in particular, minimum 
divergence or maximum intensity along the axis.3–5  

In the aforementioned papers the field in the far 
diffraction zone was calculated using an integral Fourier 
transform for a complex amplitude of laser radiation at the 
exit from a nonlinear medium. Then based on an angular 
spectrum the authors calculated the chosen quality criterion 
whose extremum was found using the gradient method, a 
standard algorithm of coordinate discent, and the 
regularization method.6 This approach resulted in a too 
complicated algorithm of optimizing an initial shape of the 
laser beam wave front.7,8  

It is shown in this paper that the square mean angular 
divergence of a laser beam coincides with one of the 
integrals of the parabolic equation which describes light 
beam propagation behind a nonlinear layer of the 
atmosphere in free space. Because the integral of movement 
is kept constant its value, and hence nonlinear divergence 
can be calculated from the data on transverse distribution of 
the beam amplitude and phase directly at the exit from a 
nonlinear layer (atmospheric layer) without the use of 
complicated Fourier transform. An optimal wavefront shape 
is found, as before, using the gradient method of control.7  

We consider the approach proposed, taking, as a case 
in point, the defocusing medium with Kerr nonlinearity. Let 
a controllable optical element that can modify in the initial 
wave front of the beam, e.g., a lens, be at the entrance to a 
nonlinear medium. Then the laser radiation with a Gaussian 
amplitude profile of an initial radius a

0
 passing through a  

nonlinear layer enters a linear medium where, in the far 
diffraction zone, its directional pattern is formed (Fig. 1). 

 

 
 

FIG. 1. Scheme of the problem under study: 1) laser beam; 
2) controllable lens; 3) nonlinear medium; and 4) receiver in 
the far diffraction zone. 
 

In quasioptical approximation the beam complex 
amplitude A in a nonlinear medium satisfies the following 
equation written for dimensionless variables:  

2 i 
∂A
∂z  = Δ

⊥ 
A + α ⏐A⏐2 A ,  0 < z ≤ l (1) 

with the boundary condition at z = 0 
 

A( z = 0, x, y) = exp( ) – 
x2 + y2

2  exp( ) i 
x2 + y2

2  J . (2) 

 

Here x, y, and z are transverse and longitudinal coordinates; α 
is the parameter of nonlinearity; l is the nonlinear layer 
thickness; ϑ is the normalized initial focusing of the beam 
equal to the ratio of a diffraction length ld = k a

0
2 to the focal 

length of the lens, F. 
In free space, behind the layer of the nonlinear medium, 

Eq. (1) takes the form 
 

2 i ∂A/∂z = Δ
⊥ 

A ,  l < z ≤ z
0
 , (3) 

 

where z
0
 � ld which corresponds to the far diffraction zone. 

The solution of this equation makes it possible to 
calculate radiation characteristics in the far diffraction zone, 
in particular, the effective angular divergence of the beam. 

The gradient control of the beam wave front (initial 
focusing) is realized as 
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ϑN+1
 = ϑN – γ grad

JN
 J ,  N = 0, 1, 2 , (4) 

 

where N is the number of the iteration; γ is the control 
coefficient; J is the quality criterion for radiation in the far 
diffraction zone equal the functional7: 

J = Θ2 = 

⌡⌠
 –∞

 +∞

⌡⌠
(kx

2 + ky
2) ⎢S(kx, ky, l)⎢2 dkx dky

⌡⌠
 –∞

 +∞

⌡⌠
 ⎢S(kx, ky, l)⎢2 dkx dky

 , (5) 

 

which has a meaning of the square mean angular width of the 
directional pattern of the laser beam passing through a l–thick 
nonlinear–medium layer. Here S(kx, ky, l) is the Fourier image 

of a complex beam amplitude A taken in the cross section z = l: 
 

S(kx, ky, l) = 
1

(2π)2 ⌡⌠
 –∞

 +∞
 A(x, y, l) exp (– i kx 

x – i ky 
y) dx dy. (6) 

 

It is clear that the calculations of the functional (5) and 
the optimized focusing ϑ (4) are done for different cross 
sections in the medium, the control is made in the cross 
section z = 0, at the entrance to the medium, and the 
functional is taken in the far diffraction zone. Therefore to 
solve the problem formulated one must consider the systems of 
adjoint equations7 both in a nonlinear layer and free space 
where a directional pattern is formed. 

In this case, as noted above,7 there can exist two types of 
problems. The first one is minimization of radiation angular 
divergence behind the layer of a nonlinear medium in the far 
diffraction zone in free space. Such problems partially arise in 
atmospheric optics when systems of space communication and 
measurements are used. The second type of problems is 
peculiar for laser technology: minimization of angular 
divergence in this case is realized in a focal plane of a lens 
placed at the exit from the nonlinear medium. 

To solve such problems two systems of adjoint equations 
are used.7 The first system consists of Eq. (1) which is solved 
on a segment of the nonlinear medium 0 < z ≤ l and the 
adjoint equation which is solved in the opposite direction. The 
second system incorporate Eq. (3) for a complex amplitude of 
the beam in free space which can be solved either on the 
segment l < z ≤ z

0
 for the first type of problems or on the 

segment l < z ≤ Rf (where Rf is the focal length of the lens 

placed at the exit from the nonlinear layer), as well as the 
related adjoint equations which are solved in the opposite 
direction. 

It is easily seen that in such a method of calculating the 
quality criterion the calculational procedure is sufficiently 
complicated and entails lengthy computations. 

At the same time it is possible to show that the quality 
criterion or the goal function of control (5) is the integral of 
movement of Eq. (1) and, hence, it can be calculated not only in 
the far zone field but also in any cross section, the exit from the 
nonlinear layer included. Actually, in the denominator of the 
functional (5) there is the total beam power which is kept 
constant in free space 

 

P
0
 = 

⌡⌠
 –∞

 +∞

⌡⌠
 ⏐S(kx, ky, l)⏐2 dkx dky = const . (7) 

 

By substituting the expression for the spectrum (6) into the 
numerator of the functional (5), after integration by parts, we 
obtain 

J = Θ2
 = 

1
P

0
 ⌡⌠
 –∞

 +∞
 

 ⌡⌠
 

 ⎝
⎜
⎛

⎠
⎟
⎞∂A(x, y, z)

∂x

2

 + 
∂A(x, y, z)

∂y

2

dx dy. (8) 

 

The value (8) is the movement integral of the parabolic 
equation (3) since it is easy to prove that ∂J/∂z = 0, Ref. 9 
(here z is the coordinate in free space at α = 0) 

Thus the square mean angular divergence of the beam is 
equal, accurate to the constant factor, to the movement 
integral (8) which is chosen as the quality criterion. 

Consider now a mathematical algorithm for calculating the 
optimal initial focusing in this case. The equation adjoint with 
Eq. (1) has the form 

 

– 2 i ∂ψ / ∂z =
 
Δ
⊥ 

ψ + 2α ⏐A⏐2 ψ – α A*2 ψ* . (9) 
 

After variations of the functional (8) have been 
calculated we obtain the following boundary condition for it; 

 

ψ(x, y, l) = – [∂2A*(x, y, l) / ∂x2] – [∂2A*(x, y, l) / ∂y2]. (10) 
 

The functional gradient J is calculated, as earlier,7 by 
formula 

 

δJ
δJ (z = 0) =Re

⎣
⎡
 

 

 i ⌡⌠
–∞

 +∞
 

 ⌡⌠
 

 
 ψ(x, y, 0) )(x2

 + y2)exp( ) – 
x2 + y2

2  × 

×
 
exp 

⎦
⎥
⎤

⎝
⎛

⎠
⎞ i 

(x2 + y2) J

2

 

 
 dx dy  (11) 

 

The optimal initial focusing is found using the gradient 
method (4). 

The numerical calculations of the optimal initial focusing 
for different values of radiation and medium parameters were 
made using the foregoing scheme. Depicted in Figs. 2 and 3 are 
the plots obtained in such calculations for the following values 
of the parameters of the beam and the medium: α = – 10, 
l = 0.25. As seen from Fig. 2, the use of both the control 
algorithm with the Fourier transform7 and the method under 
study provide an optimal regime at about equal number of 
iterations which is also determined by the initial value of the 
focusing parameter chosen. The plots in Fig. 3 enable one to 
follow the process of minimization of the goal function of control 
during iteration. The results obtained using the two different 
methods are in good agreement as it is the case in Fig. 2. 

 

 
 

FIG. 2. A plot of the value of initial beam focusing vs a 
number of iterations for α = – 10, l = 0.25, and ϑ

0
 = 0. 

Solid curve illustrates calculations using the method 
described; dashed curve the calculations using the Fourier 
transform technique. 
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FIG. 3. A plot of the normalized quality criterion vs a number 
of iterations for α = – 10, l = 0.25, and ϑ

0
 = 0. Solid curve is 

for calculations made using the method described; dashed 
curve is for calculations by Fourier transform (Q

0
2 is the 

angular divergence in a linear medium). 
 

The above approach was also applied to calculations 
made in noniterative approximation. In this approximation the 
complex amplitude of a Gaussian beam is 

 

A(x, y, z) = 

A
0

f(z) exp
⎝
⎛

⎠
⎞ – 

x2
 + y2

a
0
2 f 2

 – 
ikx2

2 f  
df
dz – 

iky2

2 f  
df
dz + iϕ(z) ,(12) 

 

where A
0
 is the amplitude of the field at the beam axis; ϕ(z) is 

the phase difference at the beam axis; f(z) is the dimensionless 
beam width. Equation (1) is converted to the form  

 

d2f/dz2 = (1 + α
NL

) / f 3 (13) 
 

with boundary conditions at z =
 
0 

 

f(0) = 1 , df(0)/dz = – ϑ , (14) 
 

where α
NL

 = α/4 is the nonlinearity parameter. 

As shown in Ref. 4, the total angular divergence in the far 
zone (chosen, as in the previous consideration, as a quality 
criterion) can be calculated as a sum of nonlinear and diffraction 
limited divergences at the boundary of the medium at z = l: 

 

J = Θ2 = ( )df
dz

2 

z=l

 +
 1

f 2
 

z=l

 . (15) 

 

Let us show that this value, accurate to the constant 
factor, corresponds to the movement integral I

3
. Actually, by 

substituting Eq. (12) into Eq. (8) and making integration we 
obtain the expression (15) for the total angular divergence 
accurate to the constant factor. 

To perform the algorithm of gradient control (4) we obtain 
the equation adjoint to Eq. (13). By varying Eq. (13) and the 
boundary conditions (14) over the variable ϑ we obtain 

 

d2(δf)
δz2  = (–3) 

1 + α
NL

f 4
 δ f ; (16) 

 

δf(0) = 0 ,  
dδ f(0)

dz  = – δϑ . (17) 

 

The variation of the functional (15) is written as 
 

δJ(z = l) = (–2) 
δ f
f 3

  

z=l

 + 2 
df
dz 

dδ f
dz   

z=l

 . (18) 

 

By multiplying Eq. (16) by ψ and integrating it over z 
from 0 to l and determining the boundary conditions for a new 

equation from a comparison with Eq. (18) we obtain the adjoint 
equation 

 

d2ψ
dz2 = (–3) 

1 + α
NL

f 4
 ψ (19) 

 
with the boundary conditions  
 

ψ(l) = 2 
df(l)
dz  ,  

dψ(l)
dz  = 

2

f 3(l)
 . (20) 

 
Then the derivative of the functional for angular divergence 

of radiation is found from the boundary conditions for 
 
δJ
δϑ (z = l) = – ψ(0) . (21) 

 
Thus the optimal initial focusing ϑ is found using the 

expression (4) and solving Eqs. (13) and (19) with proper 
boundary conditions by numerical methods and calculating the 
gradient of the functional (21). 

As known equation (13) has an analytical solution, and the 
dependence J on ϑ can be represented in an explicit form.4 
However, it was shown, that calculation of the gradient leads to 
the fifth–power equation with respect to ϑ. Therefore the 
numerical methods are also needed for its solution. As in the 
previous case, the optimal initial focusing for different values of 
the nonlinear layer thickness l and the nonlinear parameter α 
was calculated using the above calculational scheme. The results 
obtained coincide with the values ϑ

opt
 obtained previously from 

numerical solution of the equation for the optimal initial 
focusing.4  

Thus, it is clear that the proposed approach treated in 
quasioptical and nonaberrational approximations provides a 
simpler mathematical algorithm of the initial focusing 
optimization compared to the one from Ref. 7. As a result 
combersome calculations of the radiation quality criterion in the 
far zone and solving the direct and adjoint equations for the 
beam complex amplitude in free space are avoided. The method 
reduces the bulk of numerical calculations by a factor of two 
thus increasing the response of the optical control system and 
simplifying the problem of optimization. 

The higher efficiency of the system operation on minimizing 
nonlinear beam divergence can be attained using an aberration 
lens (mirror) which creates an optimal wave front of a more 
complex shape. Relevant algorithm does not substantially differ 
from the one described in this paper. 
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