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The paper presents an overview of recent publications devoted to application of 
the simplex method to problems of atmospheric adaptive optics. A comparison of this 
method with the gradient procedure of hill climbing is carried out. The regimes of 
stationary and nonstationary wind–induced refraction in a stable medium, wind 
velocity fluctuations along a path, and large–scale fluctuations of the refractive index 
are considered in this paper. 

 
1. INTRODUCTION 

 
The problem of light power transfer through the fixed 

distance is of a great importance for present–day atmospheric 
optics. The transferred power is limited by such factors as 
turbulent and nonlinear spreading of a beam as well as its 
random wandering caused by large–scale fluctuations in the 
refractive index and pulsations in the wind velocity being 
available along the path. Adaptive systems of control over the 
phase of a light beam in the real time are used to compensate 
for these effects. A control in the problems of atmospheric 
optics is usually aimed at maximization of the light power 
received by the prescribed aperture. The principle of aperture 
sounding is widely used for controlling in the multivibrator 
adaptive systems. However, the gradient procedure of "hill 
climbing" being originally as the basis of the above principle 
results frequently in a search of only a local extremum of 
quality criterion. It also depends strongly on the initial 
conditions and turns out inefficient in the case of fluctuations in 
the parameters of a beam and medium. Therefore the 
development of such methods of control over the phase of light 
beam which does not require calculation of a goal function 
gradient is of interest. In particular, the simplex search can 
refer to such methods. 

This paper presents an overview of the original recent 
publications devoted to application of the simplex method to 
the problems of atmospheric adaptive optics. 

 
2. MATHEMATICAL MODEL OF THE SYSTEM OF 

CONTROL OVER THE PHASE OF A LIGHT BEAM 
 
A statement of the problem on beam propagation through 

the atmosphere is mathematically described by the system of 
differential equations1 for the complex amplitude of light field 
E(x, y, z, t) and temperature of a medium T(x, y, z, t)  

 

2ik 
∂E
∂z  = Δ⊥ E + 2 

k2

n
0
 ( )∂n

∂t T + n~  E ; (1) 

 

ρCp ( )∂T
∂t  + (v∇) T  = αI , (2) 

 
where k = 2π/λ is the wave number, n is the refractive index of 

a medium, n~ is the random field describing turbulent 
fluctuations of refractive index, ρ is the density, Cp is the heat 

capacity, v is the motion velocity of a medium, α is the 
absorption coefficient, and I = cn⏐E⏐2/8π is the light intensity.  

The nonlinearity parameter R proportional to the radiation power 
and to the convection time τv = a/v, where a is the beam radius, 

is the main likeness criterion for systems (1) and (2). 
The complex amplitude of the light field E(x, y, z, t) at the 

point of entry into a medium (at z = 0) is prescribed in the form 
 

E( x, y, 0, t) = E
0
( x, y) f(t) exp (i U( x, y, t)) , (3) 

 
where E

0
 is the amplitude profile, f(t) is the light pulse 

envelope characterized by the duration τp, and U is the 

controllable wave front. In the problem of beam focusing it is 
convenient to use one of the following quality criteria for 
control (goal functions of control): 
– normalized peak intensity in the observation plane 

 
Jm = (1/I

0
) max

x,y
 (I( x, y, z

0
, t)) ; (4) 

 
– focusing criterion in the observation plane 

 

Jf = 
1
P

0
 ⌡⌠
–∞

 ⌡⌠
∞

 σ(x, y) I( x, y, z
0
, t) dx dy , (5) 

 
where P

0
 is the total power in the beam, I

0
 is the peak intensity 

at the point of entry into a medium, and σ the aperture function 
describing a localization spot of light in the observation plane. 
Under nonstationary conditions a control efficiency is best 
estimated using the parameter 
 
η(T) = W(T)/W

0
(T) , (6) 

 

where W(T) = ⌡⌠
0

T

 Jf (t) dt is the total light energy coming onto 

the receiving aperture for the fixed time T, and W
0
(T) is the 

same energy in the lack of control. 
According to the principle of modal control, the beam 

wave front formed by a corrector can be represented as 
superposition of the selected basis modes Si(x, y), i.e.,  

 

U(x, y, t) = k ∑
i=1

N

 ai(t) Si(x, y) , (7) 

 

where ai are the controllable coordinates (control signals). The 

temporal dependences of the signals ai can be characterized by a  
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pause duration between the subsequent processes of wave front 
correction τc. The algorithms developed in theory of control and 

automatic adjustment are increasingly applied to a search for 
optimal values of ai in the systems of aperture sounding. The 

simplex method for finding an extremum of the goal function 
(quality criterion) of control2 refers to them.  

 
3. ALGORITHMS FOR CONTROL 

 
It is naturally to begin a subsequent description of 

algorithms with the simplest regime at which an extremum of 
the goal function exists in the system of controllable 
coordinates and its position is independent of a search path. In 
the problems of atmospheric optics such a regime takes place 
when quasicontinuous radiation propagates through a medium 
with time–independent parameters. If the pauses between phase 
corrections are quite long in order that the stable temperature 
field could be established in the beam, then the maximum of 
object illumination can be achieved at an identically determined 
set of controllable coordinates. Thus in the N–dimensional 
space the motion to an optimum (hill climbing) can be 
implemented by multiple reflection of a certain object with 
N + 1 top (so–called simplex).  

The direction of motion to an extremum is based on the 
values of goal function at all the tops. For example, motion to 
the maximum is carried out from the top with the least value of 
a goal function to the opposite face of simplex. A step in the 
search is determined by passing from "old" simplex to "new" 
one by means of elimination of the worst top after plotting its 
specular reflection relative to the face being common for both 
simplexes. Multiple reflection of the worst tops results in step–
by–step motion of the simplex center to the given aim along a 
certain curve. Essentially that the goal function is required to 
be calculated once for every step in a search excepting the start 
when its N + 1 value should be calculated.  

The search with the variable step is frequently used under 
the above–indicated conditions when position of the goal 
function maximum is independent of the values of controllable 
coordinates. That makes it possible to combine the high velocity 
of motion at the beginning of optimization with an accuracy in 
a search of extremum at the stage of finishing. The power or 
exponential laws are usually used for a change in the simplex 
size. In so doing the accuracy for optimum achievement, initial 
size of simplex L

0
, and the number of steps in the search turn 

out to be related by the simple relation.2 The value of L
0
 

empirically estimated can be refined in the test problems for 
optimization. 

In the real problems of atmospheric optics which are 
known to be nonstationary, the search of the object 
illumination maximum is accompanied by the transient processes 
in the "beam –– medium" system. Such processes occur when 
the parameters as well as controllable wave front vary along the 
path. In the regime of a long pulse that propagates through a 
regular medium, a monotonic shift of the beam towards the 
wind direction in the controllable space produces the effect, 
which is called "target drift" in optimization theory.2 In 
addition, the search for the optimal phase can be represented in 
terms of two processes: climbing to the "movable hill" and 
following its motion. Essentially that "hill" motion, i.e., 
position of the goal function maximum depends on the path of 
its search. 

In other words, since the processes of the thermal lens 
formation along the path and of the beam phase optimization 
occur at the same time the unsuccessful initial steps can cause 
such decrease in the goal function which cannot be eliminated 
by subsequent, even successful, corrections. Therefore, it is 
important to carry out the first steps in the correct direction  

which is, in its turn, determined by the initial configuration of 
simplex.  

The a priori choice of the latter, as the experience shows, 
can be complicated if the dimensionality of the control space N 
is greater than three. In this connection, the problem arises for 
reasonable limitation of the number of independent controllable 
coordinates that is closely related to the problem of increasing 
in the speed and stability of an adaptive system. In addition, a 
choice of any regular method for changing in the face length of 
simplex as approaching to the extremum involves difficulties 
under nonstationary conditions. Therefore it stands to reason to 
remain the size of simplex unchanged in the case of available 
transient processes accompanying the search of the optimal 
phase along the path.  

The size of simplex can be optimized, for example, using 
the criterion of maximum light energy coming to the fixed 
aperture of the object in the fixed time of control (6). Let us 
note also that "cycling" of simplex is one of the effects 
appearing in the course of the target drift, i.e., no reflection of 
any tops for a long time, as a result, simplex stops a 
translational motion to the target. To eliminate this effect the 
algorithms with forced reflection of tops remaining unmovable 
during the certain number of steps are used in optimization 
theory.2  

In the regime of wind velocity pulsations available along 
the path the beam defocusing is close to axisymmetric one that 
should be accounted for choosing the basis and strategy of 
control. In particular, it is reasonable to apply two tilt angles 
and axisymmetric focusing to the basis as well as to use the 
search with variable strategy after its dividing into two stages. 
The first stage is the control at the initial stage of heating of 
the medium which allows one to follow the drifting target using 
the algorithm with forced reflection of tops and to avoid the 
cycling of simplex. Then, at the second stage, when random 
wandering of a beam and transient processes resulting from 
variation in the states of a medium predominate, the algorithm 
with unforced reflection of tops should be applied.2 Its basic 
rule is the reflection of the worst top of simplex without any 
additional conditions.  

 

4. DISCUSSION OF NUMERICAL RESULTS 
 
Below we discuss the results obtained for the Gaussian 

beams along the path z
0
 = 0.5ka2

0
 long, where a

0
 is the initial 

radius of a beam. The relation σ = exp(– (x2 + y2)/S2
t) is used 

as the aperture function σ. Here St is the effective radius of the 

region of light beam localization which is equal to the double 
radius of the focal spot bounded by diffraction.  

4.1. Stationary wind–induced refraction in a regular 

medium (f(t) ≡ 1, τc � τ
ν
, v = const, n~ = 0). Based on the 

salient features of thermal blooming in the moving medium 
(non–axisymmetric defocusing and shift of a beam due to 
wind), as the controllable coordinates it is naturally to choose 
the tilt angle of wave front in the wind plane Jx and two 

parameters of focusing Sx and Sy in the planes longitudinal and 

transverse to the wind direction. According to that 
 

U = Jxx + Sx 
x2

2  + Sy 
y2

2  . (8) 

 
A comparison of the convergence rates and the accuracies in a 
search of the extremum of a goal function obtained by both the 
simplex method and ordinary gradient procedure is of most 
interest for the considered model problem. As calculations of 
the paths in a search of the maximum of focusing criterion 
show,3 the obtained optimal values of Jf and number of  
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optimization steps appear to be quite close for the comparative 
methods. However the number of measurements (calculations) 
of the goal function for the simplex method is 2–2.5 times less 
than for the gradient one since each gradient step is 
accompanied by the test measurements of a quality criterion 
response to the small variations in all the coordinates. The 
summary data are listed in Table I. In the stationary problems 
the simplex method, as is seen from the table, actually provides 
a higher rate of the search of the extremum comparing to that 
of the gradient procedure.  

 
TABLE I. Correction of stationary wind–induced refraction 
in a regular medium 
 

Control 
method  

Nonlinearit
y parameter 

R 

Number of goal 
function  

Radiation parameters 
on the object 

  measurements Jf Jm 

Simplex – 15 
– 30 

15 
16 

0.49 
0.30 

1.11 
0.56 

Gradient – 15 
– 30 

36 
36 

0.49 
0.30 

1.14 
0.60 

 

4.2. Nonstationary wind–induced refraction in a regular 

medium (f = 0 at t < 0, f = 1 at t ≥ 0, τc ≤ τν, v = const, n~ = 0). 

As was above–mentioned, the main problem arising during 
compensation for the nonstationary variations in the beam in 
the real time by means of the simplex method is a choice of the 
optimal size of simplex L and the control basis. Following to 
Ref. 4 we can consider the available potentialities of 
optimization of L using three–dimensional basis (8). Table II 
represents the data calculated for the duration of compensation 
T = 3τ

ν
 within the wide range of the nonlinearity parameter R 

and the values of the integral criterion of quality of correction η 
at the different values of L. As can clearly be seen from the 
table, the optimal size of simplex exists actually at each R, in 
addition, L

opt
 increases with increase in R. The optimal size of 

simplex can be also defined by the control duration as an 
analysis of dependences of L

opt
 on T shows (Table III). The 

decrease in L
opt

 with increase in T is associated with a need for 

compensation for the focusing criterion oscillations that can 

appear at long duration of control (T � τ
ν
) in the case when the 

amplitude of phase variations is excessively large. 
 

TABLE II. Efficiency parameter of control η(3τ
ν
) in 

compensating for nonstationary wind–induced refraction in a 
regular medium 
 

 Length of simplex face L 

R 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2
– 10 
– 20 
– 30 
– 40 

1.16 
1.16 
– 
– 

1.29 
1.26 
– 
– 

1.38 
1.40 
– 
– 

1.56 
1.52 
– 
– 

1.54 
1.60 
1.16 
1.18 

1.50
1.64
1.26
1.25

– 
1.54 
1.32 
1.30 

– 
1.46 
1.29 
1.34 

– 
1.42 
1.20 
1.36 

– 
1.40
1.19
1.30

– 
– 
– 

1.24
 

TABLE III. The optimal size of simplex in compensating for 
nonstationary wind–induced refraction in a regular medium 
 

 Duration of control T/τ
ν
 

R 2 3 4 5 6 7 8 9 10 11 12 
– 20 
– 30 

0.65 
0.71 

0.64 
0.70 

0.60 
0.68 

0.50 
0.66 

0.45 
0.64 

0.41
0.60

0.40 
0.50 

0.37 
0.45 

0.35 
0.44 

0.35
0.41

0.34
0.40

 

To optimize the control basis let us draw on the temporal 
dependences of coordinates Jx(t), Sx(t), and Sy(t) in the course of 

dynamic correction.5 The variables Sx and Sy, as their analysis  

shows, appear to be proportional each other at every instant of 
time in the wide range of R. Therefore it is natural to decrease the 
number of independent coordinates of control by introducing the 
combination mode (x2/4 + y2/2), i.e., to assign the wave front in 
the form 

 

U = Jxx + S ( )x2

4  + 
y2

2  . (9) 

 

The summary data on simulation of the simplex search of the 
object illumination maximum in basises (8) and (9) are listed in 
Table IV, where the correction efficiency is estimated as earlier 
according to the parameter η(3τ

ν
). As is seen from the table, the 

control using the different basises turns out to be more efficient 
depending on nonlinearity of a medium (radiation power). In 
particular, three–dimensional basis (8) is preferable to use at 
⏐R⏐ ≤ 20 while two–dimensional basis (9) – at large 
nonlinearities.  

 

TABLE IV. Efficiency parameter of control η(3τv) in 

compensating for nonstationary wind–induced refraction in a 
regular medium 
 

Control Nonlinearity parameter |R | 
basis 10 20 30 40 
(8) 
(9) 

1.36 
1.40 

1.60 
1.56 

1.38 
1.52 

1.37 
1.50 

 

4.3. Nonstationary wind–induced refraction at velocity 
pulsations (f = 0 at t < 0, f = 1 at t ≥ 0, τc ≤ τν, 

v(z, t) = <ν> + δv~(z, t), n~ = 0). Going to the stochastic problems 
of control let us consider first the beam propagation through the 
medium with random pulsations of the wind velocity along the 
path, neglecting the natural fluctuations in the refractive index. 
The regime of the sufficiently frequent pulsations in the velocity 

δv~ can be available along the near–ground horizontal paths, the 
transient processes in the beam–medium system are quite essential 
at such pulsations.6 According to Refs. 6 and 7, we can assume for 
definiteness the average time, during which the pulsations are 
"frozen", to be Tv = 2τ

ν
 at the numerical experiments, while the 

standard deviation for the fluctuation component of the velocity σ
ν
 

to vary within 0 ≤ σ
ν
 ≤0.5<ν> range.  

As the calculations7 show for the above–considered regime 
the distortions of the beam can successfully be compensated in the 
three–dimensional basis  

 

U = Jxx + Jyy + S ( ) 
x2

2  + 
y2

2   . (10) 

 

In addition, the optimal size of simplex L
opt

 is determined by only 

the average parameter of nonlinearity <R> and estimated on the 
above–considered grounds.  

It was found in Ref. 7 that the variable strategy of a simplex 
search (see above) developed under conditions of sufficiently 
strong pulsations of the wind velocity (σ

ν
 ≥ 0.3<ν>) allows one 

actually to compensate the random wandering of the beam and to 
avoid unstable regimes in the course of control over the phase for a 
long time (T/τ

ν
 = 10 ... 12). In so doing at <⏐R⏐> = 10 ... 30 the 

phase compensation increases the energy W(T), on the average, by 
a factor of 1.5 comparing to the case of propagation of the 
uncontrollable (both collimated and focused) beam. 

A comparison made with the gradient procedure shows the 
identical and average over time values of the focusing criterion 
<Jf> (see Table V) can be attained by using both the methods. The 

algorithm of the simplex search is stable for pulsations of the wind  



I.V. Malafeeva and S.S. Chesnokov Vol. 6,  No. 12 /December  1993/ Atmos. Oceanic Opt.  851 
 

 

velocity within a range of σ
ν
 ≤ 0.5<ν>, in addition the standard 

deviation of the focusing criterion is virtually unchanged with 
increase in σ

ν
. This can apparently be explained by the fact that 

the used algorithm provides an uniform scanning by a beam over 
the mutually perpendicular planes. As a result, the average 
displacement of the center of gravity of the beam <rc> is less than 

a/2. We can note also that to provide the stability, the control 
procedure is required to be more complicated when using of the 
gradient method under conditions of σ

ν
 ≤ 0.3<ν>, for example, we 

should apply the sounding isolated over both focusing and tilt.6  
 

TABLE V. Average values of focusing criterion in 
compensation for nonstationary wind–induced refraction in a 
medium with velocity pulsations (σ

ν
 = 0.3<ν>) 

 

Control Nonlinearity parameter <|R |> 
method 10 20 30 40 
Simplex 
Gradient 

0.40 
0.42 

0.27 
0.29 

0.24 
0.26 

0.23 
0.25 

 

4.4. The turbulent atmosphere characterized by the random 
wind along the path (f = 0 at t < 0, f = 1 at t ≥ 0, τc ≤ τν, 

v(z, t) = <v> + δv~(z, t), n~ ≠ 0). For the regime under 
consideration, we assume that the average time during which the 
wind velocity pulsations become frozen and the time of each 
realization of the field of random fluctuations in the refractive 

index n~ are identical and equal to 2τ
ν
. In addition, both the wind 

velocity and refractive index change at the same instant of time. 
The control quality is studied in Ref. 7 depending on the 

parameter Ds(2a) (Ref. 8) which characterizes the turbulence of 

the atmosphere along the path and makes sense of the structure 
function of phase fluctuations of the spherical wave in the beam 

diameter. To form the random fields n~ the method of modal 
representation of the atmospheric inhomogeneities was used.9 The 
efficiency of correction is estimated by the normalized total light 
energy η arrived to the receiving aperture in the control time 
T = 12 τ

ν
. 

The calculational results averaged over 30 samplings 
following one by one in time T = 12 τ

ν
 are listed in Table VI. As 

the analysis of the table shows the control based on the simplex 
method is stable and rather efficient within the wide range of the 
parameter Ds(2a0

). 

 
TABLE VI. Average values of efficiency parameter of control 
<η(12τ

ν
)> in compensation for nonstationary wind–induced 

refraction in a medium with velocity pulsations (σ
ν
 = 0.3<ν>, 

<|R |> = 20) 
 

Atmospheric turbulence parameter Ds(2a0
) 

0.0 0.6 1.2 1.8 2.4 3.0 3.6 4.2 
1.27 1.32 1.33 1.34 1.36 1.35 1.34 1.33 

 
 

5. CONCLUSION 

 
Investigations carried out show that the simplex method can 

be successfully used in the systems of atmospheric adaptive optics 
based on the aperture–sounding principle. Comparing to the 
gradient procedure of hill climbing the simplex method has the 
advantages such as stability and high speed. 

The control based on the simplex method provides the 
reliable maximum of the goal function in the regime of the 
stationary wind–induced refraction. In addition, the number of its 
measurements is as low as 1.5–2 times comparing to the gradient 
procedure.  

In the nonstationary regime of wind–induced refraction 
for the fixed parameters of a medium and beam there is the 
optimal size of simplex determined by the control duration 
and speed of the adaptive system. Optimization of the 
simplex size allows us to increase the total energy coming to 
the receiving aperture by a factor of 1.3–1.5 as comparing to 
the gradient method. 

The simplex method and analysis of a priori data on the 
behavior of a goal function in the regime of nonstationary wind–
induced refraction makes it possible to decrease the number of 
controllable variables. That permits us to reduce the technical 
requirements for the system of control over the beam. 

As applied to the regime of random pulsations of the 
wind velocity along the path we developed the variable 
strategy of control. Such a strategy is capable of 
compensating the random wandering of a beam and to 
eliminate the losses in stability. We elucidate that the 
available large–scale fluctuations in the refractive index do 
not virtually diminish the quality of correction within the 
wide range of the parameter Ds(2a). 

In conclusion we would like to note that the simplex 
method extends strongly the possibility of the adaptive 
control over the beams in the real time as comparing to the 
gradient procedures. 
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