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Statistical characteristics of a signal of the shearing interferometer when 
recording of the laser radiation propagating through the turbulent atmosphere have 
been theoretically investigated. Analytic relationships for the statistical moments of 
the shearing interferometer signal under the various conditions for optical radiation 
propagation through the turbulent atmosphere are derived. New methods for 
processing of the shearing interferometer signal are proposed. These methods allow one 
to decrease distorting effect due to atmospheric turbulence when reconstructing the 
initial field distribution. 

 
A problem on restoration of the image of an object 

of unknown form is investigated in two directions: study 
of mechanisms of an image formation of the object 
illuminated by incoherent radiation and analysis of 
peculiarities arising when restoring an image of 
coherently illuminated object. One of the specific 
methods for solving the problem on obtaining the 
information about the phase of wave front of coherent 
source is the use of such an instrument as the shearing 
interferometer.1 This interferometer forms an interference 
pattern by mixing of a received optical wave with the 
same wave shifted by a certain short distance in the 
direction perpendicular to the wave propagation direction 
and passed through the optical wedge. Processing of the 
interference pattern allows us to obtain the information 
about the amplitude and phase of the optical wave front 
in the place of interferometer location. The initial 
characteristics of object illuminated by coherent radiation 
can be reconstructed using such information. However, 
the wave front distortions caused by fluctuations in 
amplitude and phase of the optical wave makes it difficult 
to reconstruct the initial field distribution. 

To eliminate the distortion effect of random 
inhomogeneities of atmospheric turbulence, the series of 
short–exposure interferograms of transverse shear 
recorded in the time when medium is "frozen", i.e., 
during ~10–3 s is processed. This paper presents the 
theoretical study of the statistical moments of the 
shearing interferometer signal when recording of laser 
radiation passed through the layer of atmospheric 
turbulence and the discussion of informative possibilities 
of the first two moments of measured value for 
reconstruction of the initial field distribution. 

The coherent radiation with the wavelength λ passed 
through the path length x in the turbulent atmosphere is 
assumed to be received by the shearing interferometer. If 
the complex amplitude of the optical wave at the point of 
r = {x, ρ} is denoted as U{x, ρ}, then the shearing 
interferometer signal i will be proportional to1 

 

{U(x, ρ) + U(x, ρ + Δρ) exp (iaρ)}× 
 
× {U*(x, ρ) + U*(x, ρ + Δρ) exp (– iaρ)} = 

= I(x, ρ) + I(x, ρ + Δρ) + U(x, ρ) U*(x, ρ + Δρ) × 
 
× exp (– iaρ) + U*(x, ρ) U(x, ρ + Δρ) exp (iaρ) , 
 
where x is the longitudinal coordinate; ρ is the transverse 
coordinate; Δρ is the transverse spatial shear in the shearing 
interferometer; aρ is the linear phase shift of the optical 
wave in the interferometer; I{x, ρ} = U{x, ρ}×U*{x, ρ} is 
the intensity of optical field image at the point of r; the 
asterisk denotes the complex conjugation. 

Since the interferograms of transverse shear are 
recorded for the short exposures1 (~10–3 s) every 
interferogram can be virtually considered as a random 
realization.  Therefore, averaging over the series of the 
interferograms of short exposures allows us to perform 
averaging over an ensemble of realizations of the randomly 
inhomogeneous medium. Thus the mean value of the 
shearing interferogram signal is  
 
<i> = <I( x, ρ)> + <I( x, ρ + Δρ)> + Γ

2
( x, ρ, ρ + Δρ) × 

 
× exp (– iaρ) + Γ

2
( x, ρ + Δρ, ρ ) exp (iaρ) , (1) 

 
where Γ

2
(x, ρ

1
, ρ

2
) = <U(x, ρ

1
)U*(x, ρ

2
)> is the second–

order mutual coherence function for the optical field at the 
points of {x, ρ

1
} and {x, ρ

2
}, and the angular brackets 

denote averaging over the ensemble of realizations. 
Since, by definition of the second–order mutual 

coherence function 
 
Γ

2
( x, ρ, ρ + Δρ) = Γ

2
*( x, ρ + Δρ, ρ ) , 

 
relationship (1) can be written in the form 
 
<i> = <I( x, ρ)> + <I( x, ρ + Δρ)> + 
 

+ 2⏐Γ
2
( x, ρ, ρ + Δρ)⏐ cos {aρ – arg [Γ

2
( x, ρ, ρ + Δρ)]} , 

 
where ⏐Γ

2
(x, ρ, ρ + Δρ⏐ and arg [Γ

2
(x, ρ, ρ + Δρ] are the 

modules and argument of the second–order mutual 
coherence function of the optical field, respectively. Thus  
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the shear interferogram is the sinusoidal grating, the 
interference fringe curvature of which gives the information 
about the phase contribution into the mutual coherence 
function of optical radiation. The contrast of the 
interference pattern (ν) determined as a ratio of the 
difference between the maximum and minimum intensities 
to their sum is maximum when optical wave propagates 
through the homogeneous medium. 

When the optical wave passes through the layer of 
randomly inhomogeneous turbulent atmosphere, the contrast 
of the mean interference pattern ν is lower than that in the 
homogeneous medium due to distorting effect caused by 
atmospheric turbulence. Therefore, it can be estimated by 
the following formula: 
 
ν = K( x, ρ, ρ + Δρ) γ

2
(x, ρ, ρ + Δρ) , (2) 

 
where 
 

γ
2
(x, ρ, ρ+Δρ)=⏐Γ

2
(x, ρ, ρ+Δρ)⏐/ <I(x, ρ)><I(x, ρ+Δρ)> 

 
is the modules of the complex power of coherence (the value 
of modules of the second–order mutual coherence function 
of the optical field normalized to unity);  
 

K(x, ρ, ρ+Δρ) = 2 <I(x, ρ)> <I(x, ρ+Δρ)> / [<I(x, ρ)> + 
 
+<I(x, ρ + Δρ)>]  
 
is the factor which determines the effect of inhomogeneity 
in distribution of optical radiation intensity over its cross 
section on the contrast of the mean interference pattern. 

To be specific, let us consider the model situation 
when optical radiation is assumed to be partially coherent 
beam with the initial amplitude U

0
, initial radius a

0
, wave–

front curvature radius R
0
, and initial coherence radius ρ

c 
. 

Then the quantities in Eq. (2) are, respectively, equal to2 
 
γ
2
( x, ρ, ρ + Δρ) = exp { – [ Δρ/ρ

c
(x)]2} (3) 

 
and 
 
K( x, ρ, ρ + Δρ) = 
 

= 2 exp 
⎩
⎨
⎧

⎭
⎬
⎫(2ρ + Δρ) Δρ

2a2( x)
 / ⎣
⎡

⎦
⎤1 + exp 

⎩
⎨
⎧

⎭
⎬
⎫(2ρ + Δρ) Δρ

2a2( x)
 , (4) 

 

where  
a( x) = a

0
 {(1 – μ)2 + Ω–2 (1 + θ2 + 4/3 Ωq)}1/2  

 
is the current mean radius of a beam;  
 

ρ
c
(x) = ρ

0
{[(1 – μ)2+ Ω–2

 (1 + θ2
 + 4/3 Ωq)]/[1 – μ +1/3 μ2

 + 

 

+ Ω–2 (1 + θ2 + 1/3 Ωq) + 1/4 (Ωq)–1 θ]}–1/2  
 
is the current coherence radius of optical radiation; 
μ = x/R

0
 is the focusing parameter; Θ = a

0
/ρ

c
 is the 

coefficient of the source coherence; Ω = ka
2

0
/x is the Fresnel 

number of the radiating aperture; q = x/(kρ
2

0
) is the 

parameter characterizing the turbulent propagation 
conditions along the path; k = 2π/λ is the wave number;  

ρ
0
 = (1.45kC 

2

n

 x)–3/5 is the plane wave coherence radius; 

C 
2

n

 is the structural constant of the fluctuations in the 

atmospheric refractive index. 
It is follows from Eqs. (3), (4), and (2) that if the 

linear scale of the interference pattern field ~a(x) is large as 
compared with the value of transverse shear in the 
interferometer a(x) > Δρ (usually this is always fulfilled) 
then 
 
K( x, ρ, ρ + Δρ) g 1 
 
and 
 
ν g exp { – [Δρ/ρ

c
(x)]2} . 

 
Thus, the contrast of the mean interference pattern 

will be satisfactory (ν ~ 1) as long as the coherence radius 
of the recorded field is more than the value of transverse 
shear in the shearing interferometer 
 
Δρ < ρ

c
( x) . (5) 

 
When condition (5) holds the recorded shear 

interferograms are either unified field of continuous 
interference fringes or a few sufficiently large well–
correlated speckles (the linear scale of the speckle is 
l ∼ ρ

c
(x)). In this case the averaged interferogram (since 

ν ∼ 1) allows us to reconstruct the information about the 
phase contribution into the mutual coherence function of 
optical radiation with the sufficient accuracy. Therefore, in 
processing of the individual interferograms, it is easy to find 
the continuations of the interference fringes in the 
neighbouring speckles, i.e., as if to reconstruct the whole 
shear interferogram. When the inverse relation is fulfilled 
 
Δρ ≥ ρ

c
( x) . (6) 

 
then the number of the speckles in the interferogram 
increases to a great extent, the interference fringes undergo 
strong displacements in discontinuities, and, consequently, 
the contrast of the averaged interferogram approaches to 
zero. That means the extremely high error in the phase 
determination. This situation is analogous, in its physical 
essence, to the case considered in Ref. 3 when the image of 
objects illuminated by incoherent radiation is recorded 
under the very long exposures. 

Based on this analogy we can assume that the 
measurement of higher statistical moments of the recorded 
value appears to be fruitful for reconstructing the 
coherent (as well as incoherent4,5) images. It is known 
that in observation through the turbulent atmosphere one 
can obtain higher resolution in the case of processing of 
the great number of short–exposure images of incoherent 
source by Labeyrie4 and Knox–Thompson5 techniques 
based on the measurement of variance and correlation 
function of intensity fluctuation of optical image, 
respectively, than when recording of the averaged image. 
In this connection, it is proposed to record any second 
moment of the shearing interferometer signal, for 
example, in the simplest variant, to measure the 
interferometer signal variance, which is determined by the 
following expression: 

 
<i2> = <I2( x, ρ)>+<I2(x, ρ+Δρ)>+ 
 
+ 4 <I(x, ρ) I(x, ρ + Δρ)> + 
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+ 4⏐Γ
4
( x, ρ, ρ, ρ + Δρ, ρ)⏐× 

 

× cos (aρ – arg [Γ
4
( x, ρ, ρ, ρ + Δρ, ρ)]) + 

 

+ 4⏐Γ
4
( x, ρ + Δρ, ρ + Δρ, ρ, ρ+Δρ)⏐× 

 

× cos (aρ–arg [Γ
4 
(x, ρ + Δρ, ρ + Δρ, ρ, ρ + Δρ)]) + 

 

+ 2⏐Γ
4 
(x, ρ, ρ + Δρ, ρ, ρ+Δρ)⏐× 

 

× cos (aρ – arg [Γ
4
(x, ρ, ρ + Δρ, ρ, ρ+ Δρ)]) , (7) 

 

where ⏐Γ
4
(x, ρ

1
, ρ

2
, ρ

3
, ρ

4
)⏐ and arg (Γ

4
(x, ρ

1
, ρ

2
, ρ

3
, ρ

4
))  

are the modules and argument of the fourth–order coherence 
function of the optical radiation field,6–8 respectively; 
 

Γ
4
(x, ρ

1
, ρ

2
, ρ

3
, ρ

4
)=<U(x, ρ

1
) U*(x, ρ

2
) U(x, ρ

3
) U*(x, ρ

4
)>,  

 

<I2(x, ρ)> = Γ
4
(x, ρ, ρ, ρ, ρ),  

 
<I(x, ρ) I(x, ρ + Δρ)> = Γ

4
(x, ρ, ρ + Δρ, ρ, ρ + Δρ) . 

 
For the area of strong fluctuations in the intensity of 

optical radiation propagating through the turbulent 
atmosphere when the coherence radius of the plane wave is 
smaller than the radius of the first Fresnel zone, i.e., 

 

ρ
0
 < x/k , 

 
the fourth–order coherence functions for the field U(x, ρ) 
included in the oscillating part of the variance of the 
shearing interferometer signal have the same characteristic 
scale over the difference coordinate which is proportional to 
ρ
c
(x). A value of this scale coincides with the transverse 

size of the speckle. When condition (5) holds the coherence 
functions (which are the coefficients of the first and second 
harmonics) are approximately expressed by the second–
order coherence functions: 
 

Γ
4
(x, ρ, ρ, ρ + Δρ, ρ) ≈ 2 <I(x, ρ)>Γ*

2
( x, ρ, ρ + Δρ) , 

 
Γ

4
(x, ρ+Δρ, ρ+Δρ, ρ, ρ+Δρ) ≈ 2 <I(x, ρ+Δρ)> Γ

2
(x, ρ, ρ+Δρ), 

 

Γ
4
( x, ρ, ρ + Δρ, ρ, ρ + Δρ) ≈ 2 Γ

2

2
( x, ρ, ρ + Δρ) . (8) 

 
By substituting Eq. (8) into Eq. (7), we can show 

that for Δρ � ρ
c
(x) (when the shear in the shearing 

interferometer is smaller than the linear size of speckle) 
the extracting of the first harmonic in the expression for 
<i2> allows us to obtain the information about the phase 
contribution into the second–order mutual coherence 
function of the optical radiation field in the same volume 
approximately as the measurements of ν from <i2>. 
Moreover, it is necessary to note that the amplitude of 
the first harmonic <i2> decreases slower  
(∼exp {–1/2 [Δρ/ρ

c
(x)]2}) with decrease of ρ

c
(x) than the 

contrast of the mean interference pattern. When condition (6) 
is satisfied, the variance of the shearing interferometer signal 
becomes the same not informative as the mean interferogram. 
In a word, transfer to the measurement of the second simplest 
moment as the variance does not allow us to remove restriction 
(6) or to solve the problem of "sewing" the broken 
interference fringes. An advantage of this transfer is in the 
following fact. When reconstructing the initial field  

distribution from the measurement of <i2> the distortions in 
the signal amplitude are proportional to exp {–
1/2 [Δρ/ρ

c
(x)]2} rather than exp {– [Δρ/ρ

c
(x)]2} as for the 

measurement of the contrast ν, i.e., the accuracy of the 
initial field restoration can be increased. 

As for the spatial correlation function of the 
fluctuation in the shearing interferometer signal 
<i(x, ρ

1
) i(x, ρ

2
)> by analyzing asymptotically analogously 

to Refs. 6–8, it can be shown that for Δρ < ρ
c
(x) the 

oscillating contribution to the function <i(x, ρ
1
) i(x, ρ

2
) > 

is proportional to <I(x, ρ
1
) I(x, ρ

2
)>, where 

 I(x, ρ
1
) I(x, ρ

2
)> = Γ

4
(x, ρ

1
, ρ

1
, ρ

2
, ρ

2
) is the spatial 

correlation function of intensity fluctuations of the optical 
wave incident on the interferometer transverse shear. From 
here one can make a conclusion about two–scale character 
of the function <i(x, ρ

1
) i(x, ρ

2
) > in the area of strong 

fluctuations in optical radiation. The first scale is 
determined by the size of regions with high correlation of 
the fluctuations in the optical field intensity, and therefore, 
of the interferograms of transverse shear ∼ρ

c
(x). The second 

characteristic scale r
0
 = x/(kρ

c
(x)) is proportional to the 

spatial size of the area of weak correlation of the 
fluctuations in identity of the optical radiation field (since 

r
0
 � ρ

c
(x) this area includes a great number of the single 

speckles weakly correlated between each other). Therefore, 
a measurement of the spatial correlation function i can 
allows us to reconstruct the shear interferogram not only 
inside the speckles but to determine the correlation of the 
interference fringes in the various speckles. As a result, the 
size of reconstructed areas can be expanded from ∼ ρ

c
(x) 

up to ∼ r
0
 (r

0
 � ρ

c
(x)), making the statistical "sewing" of 

the interference fringes, which are in the neighborings 
speckles. In the case of Δρ ≥ ρ

c
(x) correlation 

<i(x, ρ
1
) i(x, ρ

2
)> has the only scale proportional to ρ

c
(x) 

and, consequently, a measurement of the spatial 
correlation function does not give an advantage as 
compared with the recording <i2> or <i>.  

Thus, as a result of the analysis carried out, two 
following conclusions arise: 1) to reconstruct the initial 
distribution of the coherent source field (or an object 
illuminated by the coherent radiation) from the 
interferograms of transverse shear when recording of any 
moments of the shearing interferometer signal, it is 
necessary for condition (5) to be satisfied, and 2) the second 
moment of the signal of interferometer of transverse shear 
allows us to obtain the information about the phase 
contribution into the second–order spatial coherence 
function in the greater space area and with the larger 
accuracy than the first one. 

In spite of the fact that the Gaussian profile of optical 
radiation field distribution is considered in this paper, an 
analogous character in the behavior of statistical moments of 
recorded quantity can be apparently expected and for more 
realistic profiles also (for example, for an object of the 
arbitrary form with the sharp edges). In conclusion it should 
be noted that the proposed processing techniques of the series 
of short–exposure interferograms of transverse shear (recorded 
during, the time when the turbulence is "frozen") based on the 
measurement of variance or spatial correlation function of the 
shearing interferometer signal allows us, in principle, to 
reconstruct an image of the prolonged objects of unknown 
form being illuminated by the coherent radiation in a wider 
region of change in the conditions of propagation through the 
randomly inhomogeneous medium than the techniques based  
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on the contrast recording of the mean interference pattern 
of the transverse shear. 
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