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Basic ideas of two new methods for solving the stochastic radiative transfer 
equation (local homogeneity approximation and linear (quadratic) approximation) are 
described. The expressions for the moments of stochastic medium transmittance in the 
small–angle approximation are given. Optical image transfer through a stochastic 
scattering medium is discussed. 

 

It is generally recognized that full description of 
radiation propagation through the Earth's atmosphere calls 
for the statistical methods in the study of physical 
processes. These methods provide the construction of the 
most adequate mathematical models of the Earth's 
atmosphere, which account for the stochastic variations of 
the parameters in space and time, as well as the statistical 
description of optical radiation propagation through this 
medium.1 The basic problem of such an approach is to 
determine the relation between the statistical characteristics 
of the scattering parameters of a medium (e.g., probability 
densities, mean values, and variances) and the 
corresponding characteristics of radiation fields. 

Two classes of statistical models of the atmosphere 
(one– and three–dimensional models) are of particular 
interest for practical implementation. Within the scope of 
one–dimensional stochastic model the parameters of the 
atmosphere are modelled by one–dimensional random 
functions of altitude, and within the scope of a three–
dimensional model these parameters are random functions of 
three spatial coordinates (random fields). In this case the 
simplest one–dimensional model is a good approximation 
for modelling of the light propagation through cloudless 
atmosphere and continuous cloudiness. The most 
complicated three–dimensional model makes it possible to 
describe the effect of spatial fluctuations of the parameters 
of a medium in cloudless atmosphere and fog.2  

The most glowing example of a medium with three–
dimensional random fluctuations of scattering parameters is 
the atmosphere with cumulus clouds. 

The level of spatial fluctuations of scattering 
parameters of the atmosphere can be conveniently 
characterized by the dimensionless parameter S = M {ε} l

;
. 

Hereinafter, M {ε} defines the mean value of the random 
variable ε, and lε is the spatial scale of fluctuations in the 

extinction coefficient ε. For S < 1 the extinction coefficient 
fluctuations can be considered to be weak, and for S > 1 
they are assumed to be strong. For real natural conditions 
the following values of the parameter S are representative: 
for cloudless atmosphere S g 10–2–10–1, for fogs S g 10–1–
101, and for cumulus clouds S g 101–102.  

At present the theory of wave propagation through 
macroinhomogeneous stochastic media is being increasingly 
developed. It is based on numerical and analytical methods 
for solving the stochastic transfer equation in which the 
scattering parameters are considered to be three–
dimensional inhomogeneous random functions. The Monte 
Carlo method is the most advanced numerical method for  

solving this equation in the case of solar radiation 
propagation through cumulus clouds.3,4 The first analytic 
solutions of the stochastic transfer equation were obtained 

in Refs. 5 and 6 for a limiting case S � 1. 

During the past several years the more effective 
methods of analytic solution of the stochastic transfer 
equation have been developed. They are applicable to 
arbitrary values of the parameter S and based on the small–
angle approximation of the transfer equation (approximation 
of local homogeneity and linear (quadratic) approximation). 

The present paper gives an overview of basic ideas of 
these methods and describes future trends in the 
development of the analytical theory. 

 
APPROXIMATION OF LOCAL HOMOGENEITY 
 
In the context of the transfer theory light fields from 

different sources can be conveniently found from the 
Green's function G

0
(ρ

0
; r; Ω

0
; Ω) which describes a light 

field produced at a point of r in the direction Ω with a 
point–size unidirectional source located in the plane z = 0 
at a point specified by a radius vector ρ

0
, which radiates in 

the direction Ω
0
. For a horizontally homogeneous medium 

the Green's function is spatially invariant and has the form 
 
G

0
(ρ

0
; r; Ω

0
; Ω) = G

0
(ρ – ρ

0
 – z Ω

´
 / Ω

z
; z; Ω

0
; Ω) , (1) 

 

where ρ and Ω
⊥
 are the projections of the vectors r and Ω 

onto the plane z = 0, Ω
z
 is the direction cosine of the angle 

between the unit vector Ω and the coordinate axis z. A 
three–dimensional inhomogeneous stochastic medium can be 
approximately considered to be horizontally homogeneous 
only within a small region whose dimensions are smaller 
than a horizontal scale of fluctuations of the scattering 
parameters of a medium l

⊥
. Therefore when the transverse 

width of the Green's function R
⊥
 < l

⊥
, the Green's function 

within this region can also be assumed to be spatially 
invariant, and its form is determined solely by the law of 
variation of the scattering parameters along the beam axis. 
From the above reasoning we have for the Green's function 
G of a three–dimensional stochastic layer 
 

G
0
(ρ

0
; r; Ω

0
; Ω) ≈ G

0
(ρ

0
; ρ – ρ

0
; z; Ω

0
; Ω) , (2) 

 

where G
0
 is the Green's function of a horizontally 

homogeneous medium whose scattering characteristics in the  
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direction Ω
0
 are identical to those of a three–dimensional 

layer along the axis of the Green's function. Moreover, 
since we believe that in the horizontal direction within the 
width of the Green's function R

´
 the scattering parameters 

do not change, the Green's function G
0
 is approximately 

equal to the Green's function G
0
′ of a horizontally 

homogeneous medium whose scattering characteristics are 
identical to those of a three–dimensional inhomogeneous 
layer in the direction of the unit vector Ω whose origin is 
placed at a point r: 
 

G
0
(ρ

0
; r; Ω

0
; Ω) ≈ G

0
′(ρ; ρ – ρ

0
; z; Ω

0
; Ω) . (3) 

 
Relations (2) and (3) form the basis for the 

approximation of local homogeneity. In this approximation 
the problem of determining the Green's function of a three–
dimensional stochastic medium is reduced to a simpler 
problem of finding the Green's function of a one–
dimensional stochastic medium. The stochastic realizations 
of the light field brightness I(r; Ω) produced by arbitrary 
sources with spatial–angular distribution of brightness 
I
0
(r; Ω) can be found from the formulas 

 

I
0
(r; Ω) = ⌡⌠ ⌡⌠ dρ

0 
dΩ

0 
I
0
(r

0
; Ω

0
) G

0
(ρ
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0
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≈ ⌡⌠ ⌡⌠ dρ
0 
dΩ

0 
I
0
(r

0
; Ω

0
) G

0
′(ρ; ρ – ρ

0
; z; Ω

0
; Ω) , (4) 

 
and the statistical parameters of light fields can be 
determined by statistical averaging of these expressions. 

In practical applications of expressions (4) the Green's 

functions G
0
 and G

0
′ can be found by any convenient 

method. However by now the methods of modelling of the 
light fields have been developed only in the small–angle 
approximation of the transfer equation. This is accounted 
for by the fact that in this approximation the problem is 
reduced to well–developed divisions of the theory of 
random fields including the theory of characteristic 
functions and functionals.7,8 Using the results of these 
divisions the authors of Refs. 1, 10, and 11 put forward a 
number of models of stochastic media which sufficiently 
simply describe the optical radiative transfer. Within the 
frameworks of these models it is possible to find not only 
the mean values of propagating radiation fields but also, in 
some cases, the moments of arbitrary order and probability 
densities. This calculational procedure may be illustrated by 
considering, by way of example, the statistical 
characteristics of the transmittance of a stochastic layer, 
illuminated by solar radiation, based on the Gaussian model 
of this layer. In this case I

0
(ρ; Ω) = I

0
δ(Ω – Ω

0
), where δ is 

the delta function and I
0
 is the incident beam intensity, and 

in the small–angle approximation12 the transmittance is 
 

T
0
(r; Ω

0
) = exp 

⎩
⎨
⎧

⎭
⎬
⎫

– ⌡⌠
0

z
0

 k*(r ′
u
) d u/μ

0 
 , (5) 

 
where z

0
 is the layer thickness, k* is the effective 

absorptance by the medium,12 {r
u
′} = {ρ – b(z

0
 – u); u}, 

b = Ω
0⊥ 

/Ω
0z

, r
u
′ is the radius vector specifying the straight 

line through the point ρ in the direction Ω
0 
, and μ

0
 = Ω

0z
. 

Then the moments of the order n of the transmittance are 
 

M
nt 

= M{ T 
n
0
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0
) } , (6) 

 
or  
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By the definition,7 the characteristic functional of 

random process k*(r
u
′) is 

 

Ô
k
(ν)

 
= M 
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where ν(u) is the arbitrary function and i is the unit 
imaginary number. Then it is easy to see that 
 
M

nt 
= Ô

k 
[– i n/μ

0
] . (9) 

 
For the Gaussian model of a stochastic medium we 

assume that the quantity 
 

τ
s
= ⌡⌠

0

z
0

 k*(
–
r ′

u
) d u/μ

0
    

 
is the Gaussian random variable. Then the moments M

nt
 are  

 

M
nt 

= exp[– n M{τ
s
} + n2 D{τ

s
}/2] , (10) 

 

where 
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s
} = ⌡⌠

0

z
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the variance of τ
s
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represents the correlation function for the three–
dimensional random process k*(r), and 
 
{r

u1
} = {ρ – b(z

0 
– u

1
); u

1
},  {r

u2
} = {ρ – b(z

0 
– u

2
); u

2
} .  

 
The probability density of transmittance for the 

Gaussian model of a stochastic layer obeys a log–normal 
distribution. The Gaussian model is applicable for 
M{τ

s
} > nD{τ

s
}/2. 

Some other models of a stochastic medium and light 
fields in them were described in Refs. 1, 9, and 13. A 
comparison of the results of calculations with the numerical 
data obtained by the Monte Carlo method and with the 
results of field measurements performed in Refs. 1 and 13 
showed good agreement of the results for an optically not 
very thick cloud. For a sufficiently large optical thickness 
of clouds the agreement deteriorates and the results of 
calculations made in the small–angle approximation become  
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inapplicable. Therefore it is of interest to obtain 
sufficiently convenient mathematical expressions for the 

average Green's functions G
0
 and G

0
′ applicable at large 

optical thicknesses as well. The experience in developing 
the classical (deterministic) transfer theory showed that it 
can be done using the small–angle diffusion or diffusion 
approximations of the transfer equation. 

 
OPTICAL IMAGE TRANSFER THROUGH A 

STOCHASTIC SCATTERING LAYER 
 
Let us consider the case of observation through a 

stochastic scattering layer of a harmonic plane test object 
with brightness distribution 
 

B(ρ) = B
0
[1 + k

0 
exp(i ω

0 
ρ)] , (13) 

 
where B

0
 is the mean brightness of the object, k

0
 is its 

contrast, and ω
0
 is the spatial frequency. Substituting 

Eq. (13) into the lower equality of Eq. (4), we obtain 
 

I(r; Ω) = B
0 
T(r; Ω)[1 + τ(ω

0
; ρ; Ω) k

0 
exp(i ω

0 
ρ)] , (14) 

 
where 
 
τ(ω

0
; ρ; Ω) = T(ω

0
; r; Ω)/ T(r; Ω),  T(r; Ω) = T(ω = 0; r; Ω),  

 

T(ω; r; Ω) = 
⌡⌠ ⌡⌠ dξ d Ω

0 
G

0
′(ρ; ξ; z; Ω

0
; Ω) exp( i ω ξ)  

 
is the Fourier transform of the Green's stochastic function 
of the diffuse source and ξ = ρ – ρ

0
. 

The expression (14) is analogous to that describing 
an image of a harmonic plane object transmitted through 
a deterministic scattering layer. The only difference is 
that in this case the functions τ(ω

0
; ρ; Ω) and T(ω

0
; ρ; Ω) 

are random and depend on the spatial coordinate r. As for 
the deterministic layer, the function τ(ω

0
; ρ; Ω) 

determines the image contrast which, however, is random 
for a stochastic layer and depends on the spatial 
coordinate r. Starting from these facts it was suggested in 
Ref. 1 to call the function T(ω

0
; ρ; Ω) the unnormalized 

local optical transfer function (OTF) of a stochastic 
layer, and the function τ(ω

0
; ρ; Ω) – the normalized local 

OTF. 
The statistical characteristics of the image contrast of 

self–illuminating and reflecting objects illuminated by the 
solar radiation were studied in Refs. 1, 10, 13, and 14. 

 
LINEAR AND QUADRATIC APPROXIMATIONS 
 
One more method for solving the stochastic equation 

was proposed in Ref. 15. The essence of this method can be 
explained in a rather simple way using the operator 
methods. In operator form the transfer equation is LG = 0, 
where L is the stochastic operator of the transfer equation 
and G(0) is its stochastic Green's function. This function is 
represented by a sum of the Green's functions of unscattered 
G

u
 and multiply scattered G* light. The equation for the 

function G has the form LG* = Q, where Q is the 
functional describing the singly scattered radiation. The 
stochastic operator L and the functional Q are represented 
by a superposition of deterministic L

0
 and Q

0
 and random  

V and F components, and instead of the equation LG* = Q 
we consider an equivalent system of equations 
 

L
0 
G*

0 
= Q0 

– M{V 
∼
G*} ,  

 

L
0
 
∼
G*= F + M {V 

∼
G*} – V G*

0
 – V 

∼
G* , (15) 

 

where G
0
* and 

∼
G* are the deterministic and random 

components of the function G*. Instead of the system of 
equation (15) it is more convenient to consider another 
system which differs only by a dimensionless parameter s 
 

L
0 
G

0 
= Q

0 
– s M {V 

∼
G*} ,  

 

L
0 

∼
G* = F + s M {V 

∼
G*} – s V G*

0
 – s V 

∼
G* . (16) 

 
The mathematical analysis of the problem revealed that in 
this system the action of the operator V can be considered 
to be weak as compared to that of the operator F. 
Physically this corresponds to the fact that at an arbitrary 
point of a medium the radiation fluctuations due to singly 
scattered light are considered to be much weaker than the 
fluctuations caused by multiply scattered light. As a result, 
the solution of Eq. (16) can be found as a series expansion 
in the parameter s. In this case if in the expansion of 
deterministic components we take into consideration only 
the terms linear with respect to s, we will have linear 
approximation. If we take into consideration quadratic 
terms, we can obtain quadratic approximation.15 In linear 
approximation for regular and variable components of the 

Green's function G
1
* and 

∼
G

1
* we have 

 

L
0 
G*

1 
= Q

0 
, L

0 

∼
G*

1 
= F . (17) 

 
In the quadratic approximation for regular and variable 

components of the Green's function G
2
* and 

∼
G

2
* we obtain 

the following equations: 
 

{L
0 
– M {V L–1

0
 V}} G*

2
 = 

 

= Q
0 
– M {V L–1

0
 F}

 
– M {V L–1

0
 V L–1 F } ,  

 

L
0 

∼
G*

2
 = F + M {V L–1

0
 F} – V G*

2
 – V L–1

0
 F . (18) 

 

where L
0

–1 is the operator inverse to L
0
.  

The solution of the systems of equations (17)–(18) for 
mean fields were found in Ref. 15 in the small–angle 
approximation of the radiative transfer equation. These 
solutions are in good agreement with the numerical results 
obtained by the Monte Carlo method. 

By now the linear and quadratic approximations have 
been developed much more poorly than the local homogeneity 
approximation. Since the physical and mathematical 
interpretations of these approximations are not so clear as of 
the local homogeneity approximations, we need some 
additional examinations of convergence conditions used in 
solving the series. It is also of interest to derive the solutions 
of Eqs. (17)–(18) at large optical thicknesses. 
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