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The distorting effects of the low–frequency filtration and signal normalization 
on the frequency spectra of signals received by large–aperture systems in sensing of 
turbulent media are analyzed by asymptotic and numerical methods.  

 
It is well known that in the receiving large–aperture 

systems the fluctuations of the signal parameters are 
averaged.1–4 This effect is accompanied by a number of 
physical manifestations in sensing of turbulent media. Thus 
the antenna gain, image brightness pulsations, and 
variations of the directions of wave arrival due to the 
propagation media decrease. A physical aspect of these 
averaging effects has been sufficiently studied. However, 
one more effect occurring on large apertures, i.e., the 
transformation of the fluctuation distribution law, remains 
to be investigated. If a sufficiently large number of 
inhomogeneity scales fall on the aperture, in view of the 
central limit theorem, independently of the initial signal 
parameter distribution, the signal is normalized at the 
receiver output. The transformation of the distribution law 
is in essential for small rather than large field fluctuations.  

The signal transformation on large apertures is 
described theoretically in the simplest way by the analytical 
perturbation methods for small fluctuations.1,3 For large 
fluctuations the infinite series are summed, and the solution 
is obtained numerically.1 Particular attention is given to the 
energy signal parameters such as intensity and its moments. 
The behavior of nonenergy parameters such as polarization, 
phase, and frequency of the wave fields is less well 
understood, in particular, for large fluctuations.3 The effect 
of normalization is not pinpointed, though, as is shown 
below, it is this effect rather than averaging which causes 
the spectral distortions of signals.  

The goal of this paper is to provide an asymptotic and 
numerical analysis of the distorting effect of the low–
frequency filtration and normalization on the frequency 
fluctuation spectrum of signals received by large–aperture 
systems in sensing of the turbulent media.  
 

1. PROBLEM FORMULATION 
 

In many cases a wave field at the receiving aperture 
can be written as3,5  
 

E(r, t) = E
0
 exp [ ι ϕ

0
 (r, t)], (1) 

 

where the function ϕ
0
(r, t) specifies the phase fluctuations 

due to inhomogeneities of a propagation medium whose 
temporal and spatial variations are correlated in the context 
of the Taylor hypothesis of "frozen" turbulence.  

After field summation over the receiving aperture, at 
its output the signal  
 

Es(t) = 
1
s ⌡⌠ ⌡⌠ E(r, t) A(r) (d2 r). 

is obtained. Here A(r) describes weight processing of the 
field (current distribution) over the receiving aperture s. In 
general the instantaneous frequency of the initial field 
Ω

0
 = dϕ

0
/dt and the output signal frequency Ω = dϕ/dt 

(ϕ = arg Es) are nonlinearly related, and only for small 

phase fluctuations this relation is linearized and takes the 
simplest form  
 

Ω(t) = ⌡⌠ ⌡⌠ Ω
0
(r, t) (d2 r) / s, A = const. (2) 

 
The majority of the familiar theoretical results have 

been obtained for small perturbations.1,3 For large phase 
fluctuations the problem of estimating the output signal 
frequency fluctuations is nonlinear and to solve it one use 
summation of infinite series.1 However, one circumstance, 
which allows simplification of the solution to be made, must 
be taken into account for large apertures. The case is that 
within the aperture the summation over a sufficiently large 
number of contributions from independent inhomogeneities 
of various scales results in normalization of the output 
signal E, and for normal processes the moments, including 
those for phase and frequency, can be written in a 
comparatively compact form. In particular, the correlation 
function of frequency fluctuations is represented as6–8  
 
B

Ω
(τ) = {1 – 2exp ( –γ / 2) / (1 – R) + 

 

+ exp [ –γ / (1 – R)] (1 + R) / (1 – R)} × (ln R)′2 / 2 – 
 
– {Ei(γ / 2R) – 2Ei × (γ (1 – R) / 2R) + 
 

+ Ei(γ (1 – R) / 2R × (1 + R)]} [(ln R)′′ + 
 

+ (ln R)′2 γ / 2R ] × exp ( – γ / 2R) / 2, (3) 
 
where R is the correlation coefficient of the normally 
distributed field Es , γ is the signal–to–noise ratio for 

power of the output process Es which for model (1) has the 

form γ = 1/[exp(σ2
ϕ
) – 1] and Ei(x) is the integral 

exponent.  

For small phase fluctuations (σ2
ϕ
 � 1), γ ∼ σ–2

ϕ
 and the 

correlation function B
Ω
 takes the familiar form1,3,8  

 
B

Ω
(τ) = – σ2

ϕ
 d2 R / d t2, (4) 
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where R coincides with the phase correlation coefficient R
ϕ
. 

For large fluctuations σ2
ϕ
 � 1 the coherent component 

vanishes, and expression (3) allows simplification8  
 

B
Ω
(τ) = ln(1 – R2) (ln R)′′/ 2. (5) 

 

It should be noted that whereas for σ2
ϕ
 � 1 the 

variance of the frequency fluctuations of the output signal 
σ2
Ω
 = B

Ω
(0) is a finite value, for γ → ∞ the value σ2

Ω
 

increases unboundedly. The energy spectrum of frequency 
fluctuations  

 

W
Ω
(ω) = 

1
π ⌡⌠

∞

0

 cos ωτ B
Ω
(τ) d τ, (6) 

 

in both cases remains a finite value. Let us compare the 
effects of averaging and normalization of signals on large 
apertures on Es.  
 

2. AVERAGING OF FLUCTUATIONS 
 

In accordance with Eq. (2) it is possible to write for 
small fluctuations in the context of the hypothesis of frozen 
turbulence  
 

B
Ω
(τ) = – B′′

ϕ
(τ), 

 

B
ϕ
(τ) = 

1

s2
 ⌡⌠ ⌡⌠ (d2 r

1
) ⌡⌠ ⌡⌠ (d2 r

2
)B(0)

ϕ
 (r

1
 – r

2
 + v τ), (7) 

 

where B(0)
ϕ

(r) is the spatial phase correlation function of the 

incoming wave in the aperture plane and v is the drift 
velocity of the inhomogeneities across the aperture. The 
energy spectrum of frequency fluctuations is calculated by 
taking the Fourier transform of Eq. (7) and has the form  

W
Ω
(ω) = ω2 ⌡⌠

ω/ν

∞

 
 
⏐I(κ)⏐2 

W(0)
ϕ

 (k) k d k

2π (k ν)2 – ω2
. (8) 

 

Here W(0)
ϕ

(κ) is the spatial spectrum of isotropic phase 

fluctuations of the wave field. The function I(κ) describes a 
directional pattern which is expressed in terms of the Bessel 
function I(κ) = 2J

1
(κa)/κa for a round aperture of radius a. 

For convenience, the approximation2  
 

I(κ) = exp [ – (κ a)2 / 4], 
 

is usually employed, and the error in this case remains 
small.  

A large body of theoretical and experimental data on 
wave propagation in turbulent media show that the energy 
spectrum of phase fluctuations in its principal portion can be 

described by the power–law function9,10 W(0)
ϕ

(κ) = W
0
 κ–α, 

where the spectral power α is close to 11/3. On the basis of 
these simplifications, integral (8) assumes the form5,10  

 
W

Ω
(ω) = W(0)

Ω
(ω) Ψ [1/2, (3 – α)/2, (a ω/2 ν)2]× 

 

×exp [ – (a ω/2 ν)2], 
 

where  
 

W(0)
Ω

(ω) = W
0
 c

α
 να–2 ωα–3/4,  

(c
α
 ≡ Γ((α – 1)/2) / π Γ (α/2)) 

 
represents the energy spectrum of frequency fluctuations of 
the initial wave field after passage of the turbulent medium, 
and the factor Ψ(a, b, z2) is the confluent hypergeometric 
function.10 As could be expected, when (aω/2ν) → 0, 

W
Ω
(ω) = W(0)

Ω
(ω). When (aω/2ν) � 1, Ψ(a, b, z2) g z–1 

and  
 

W
Ω
(ω) = W(0)

Ω
(ω) H(ω), (9) 

 

where H(ω) = exp [ – (aω/2ν)2] / (aω/2ν) represents an 
averaging effect of the finite aperture and illustrates the 
effect of the spatial aperture filtration, which in the case of 
frozen turbulence transfers into the domain of temporal 
frequencies. The form of the function H(ω) is determined by 
the type of the aperture. Finite formula (9) describes the 
essence of the effect of large–aperture averaging.  
 

3. NORMALIZATION OF FLUCTUATIONS 
 

To study the effect of normalization, let us start from 
representation of the phase fluctuation spectrum by the von 
Karman model  
 

W(0)
Ω

(ω) = W
α
 (ω2

0
 + ω2)–(α – 1)/2, (10) 

 

where W
α
 = σ2

ϕ
 ω

α–2

0
c
α
(α – 2)/2 and σ2

ϕ
 is the variance of 

the phase fluctuations. The phase correlation coefficient 
corresponding to expression (10) has the form10  
 

R(0)
ϕ

(τ) = K
ν
 (ω

0
 τ) (ω

0
 τ)ν / Γ (ν)2ν–1 , ν = α / 2 – 1. 

 

Assuming that the phase fluctuations ϕ are distributed by 
the normal law, it is possible write for the correlation 
coefficient of field quadratures 
 
R = B(τ) / B(0),  
 

B(τ) = exp ( – D(τ) / 2) – exp ( – D(∞) / 2). (11) 
 
where D(τ) is the phase structure function and  

D(τ) = 2σ2
ϕ
 [1 – R(0)

ϕ
(τ)]. When σ2

ϕ
 � 1, everything is 

simplified: R(τ) = exp [– D(τ)/2].  
The wave field E is subject to the low–frequency 

filtration as a result of summation over the aperture and is 
normalized. The effect of filtration has been described in the 
previous section; therefore, here we concentrate on the 
effect of normalization and assume that R(τ) is invariable 
by averaging. Formula (5) describing the normalization of 
large wave–field fluctuations can be directly used to 
estimate W

Ω
(ω). In accordance with Eq. (6), after 

integration by parts, there is 
 

W
Ω
(ω) = – 

1
π ⌡⌠

0

∞

 
 
d [B

Ω
(τ)] sin ωτ/ω, 

 

where the function B
Ω
(τ) is given by expressions (5) and 

(11). Here the analytical integration can be performed only 
in an asymptotic case ω → ∞ in which the main contribution 
to the integral comes from the integrand in the small 
vicinity of the point τ = 0. Taking into account the fact 
that10   
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D(τ) = 2σ2
ϕ
(ω

0
 τ / 2)2ν Γ (1 – ν) / Γ (1 + ν),  

 

after integration the expression11  
 

W
Ω
(ω) = W(0)

ϕ
(ω) ln (ω/ω

0
)ν (12) 

 

is obtained and this is valid for ω � ω
0
.  

Thus the signal normalization at the output from the 
receiving aperture for large phase fluctuations of the wave 
field results in an unbounded increase of the weight of the 
correlation for the signal frequency fluctuations for small 
separation (fluctuation variance) and as a consequence, in 
the decay of the initial spectrum slowed down by the 
logarithmic factor in the high–frequency region. The wider 
is the fluctuation spectrum of the initial wave field, the 
more pronounced is this effect. 

When the normalization effect is added to the averaging 
effect of the receiving aperture, the factor H(ω), describing 
the low–frequency filtration, appears in Eq. (12).  
 
4. THE GENERAL CASE AND NUMERICAL RESULTS 
 

The energy spectrum W
Ω
(ω) can be numerically 

analyzed with successive discrete Fourier transform (DFT) 
of W(0)

ϕ
(ω) in the form of Eq. (10) for calculating R(0)

ϕ
(τ), 

substitution of D(τ) obtained in Eq. (11), calculation of 
B

Ω
(τ) using formula (3), and finally, the inverse DFT for 

calculating W
Ω
(ω). The numerical differentiation in Eq. (3) 

with minimum errors was made using spline approximations. 
Generalized formula (3) is preferable to asymptotes (4) and 
(5), since it allows one to analyze a continuous transition 
from small to large fluctuations.  

Figure 1 depicts the results of numerical calculation of 
transformation of the spectrum W

Ω
(ω) as functions of the 

frequency f = ω/2π for different phase variances (curves 1–4) 
at the predetermined frequency of the outer scale of 
turbulence f

0
 = ω

0
/2π = 10–3 Hz. For comparison, a dashed 

line shows the rate of spectrum decay which corresponds to 
the Kolmogorov model with α = 11/3. It is seen that the 
effect of normalization on the frequency fluctuation 

spectrum is insignificant for small fluctuations σ2
ϕ
 � 1 and 

gradually intensifies with increase of σ2
ϕ
. This is in 

agreement with asymptote (12).  
 

 
 

FIG. 1. Transformation of the energy spectrum of frequency 
fluctuations across the receiving aperture for different 
strengths of phase fluctuations σ

ϕ
 = 1 (1), 2 (2), 5 (3), and 

0.2 (4).  
 

The effect of the increased frequency of the outer scale 
of turbulence f

0
 on the shape of W

Ω
(ω) is shown in Fig. 2  

(curves 1–3). The increase in the frequency f
0
 results first, 

in increase of the frequency fluctuation strength and second, 
in less pronounced normalization effect. Estimate (12) and 
relation (10) support this conclusion.   

 

 
 

FIG. 2 Transformation of the energy spectrum of 
frequency fluctuations across the receiving aperture with 
the increase of the outer scale of turbulence (1–3) and 
due to averaging over the phase fluctuation spectrum (5) 
and over the aperture (4): f

0
 = 0.001 (1), 0.002 (2), 

0.005 (3), and fm = 0.1 Hz (4 and 5).  
 

To study the averaging effect of the large aperture, the 
wave–field correlation function was subject to low–
frequency filtration with the transfer function   
 

H(ω) = exp ( – (ω/ωm)2).  
 

The result of calculation of the spectrum W
Ω
(ω) at 

fm = ωm/2π = 0.1 Hz is shown by curve 4 in Fig. 2. Here 

for comparison curve 5 shows the result of W
Ω
(ω) 

calculation when the low–frequency filtration with the 
same H(ω) was performed in the initial phase fluctuation 
spectrum of the wave field. As can be seen, the averaging 
effect of the aperture filters mainly the high–frequency 
components with f > fm. The effects of lowering the high–

frequency fluctuations in the phase spectrum of the initial 
wave field and averaging over the receiving aperture are 
approximately equivalent when f ≤ fm, and when f > fm the 

effect of the aperture is somewhat stronger.  
The obtained results and numerical estimates of 

possible spectral distortions of monochromatic emitted 
radiation in sensing of the turbulent media allow one to 
separate with confidence the effects caused by the 
propagation media and the distorting effect of the large 
receiving apertures when relatively weak signals are 
received.  

Thus depicted in Fig. 3 are the energy spectra of 
frequency fluctuations observed on March 14, 1986 in the 
experiments with the "Vega–1" spacecraft. Monochromatic 
radio–frequency radiation of spaceborne transmitters at two 
wavelengths of 32 and 5 cm was used. The radiation 
propagating to the Earth was subject to the disturbing 
effects of the interplanetary medium and the Earth's 
atmosphere. It was received in Ussuriisk using a parabolic 
antenna 72 m in diameter capable of circular scanning. In 
the experiments the radiation frequency was averaged over a 
period of 1 s. The dispersion method was employed to 
separate the effect of ionized (upper plot) and neutral 
(lower plot) components of the propagation media which 
must be associated with the ionosphere and troposphere. 
These dependences, normalized to the corresponding 
dependence at a wavelength of 32 cm, were characterized by  
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the levels of frequency fluctuations σf = 0.057 ± 0.011 Hz 

and σf = 0.017 ± 0.002 Hz, respectively.  
 

 
 

FIG. 3. Energy spectra of frequency fluctuations for 
sensing in the microwave range.  
 

The energy spectra being Kolmogorov ones, on the 
average, in the low–frequency region begin to increase in 
the high–frequency region. The equivalent spectral power, 
decreasing approximately by a factor of two, approaches 
1.67. In the light of the aforementioned analysis such a 
transformation cannot be attributed to averaging or 
normalizing effect of the large aperture. The Earth's 
atmosphere is responsible for the low–frequency 
Kolmogorov spectral region, and the high–frequency 
spectral region can then be attributed to the interplanetary 
medium. The versatile experiments on sensing of the solar–
wind inhomogeneities over a wide range of distances to the 
Sun are indicative of closeness of its spectrum to the 
Kolmogorov model and of the spectral power to α = 11/3 
(see Ref. 5). Thus the observed spectral region must be 
unambiguously attributed to the Halley comet trail which 
was intersected by the radio–wave propagation path in 
radar sensing. The geometry of the experiment is shown in 
Fig. 4 where the dot 1 indicates the closest approach of the 
space craft to the comet (about 7000 km) on March 6, 1986.  

 

 
 

FIG. 4. Geometry of the experiment.  
 

It is interesting to note that the magnitude of the 
neutral component of the comet trail inhomogeneities is an 
order of the magnitude less than that of the ionized 
component. The inhomogeneity spectra of both components 
are of the same physical origin and are described by the 
spectral power α = 1.67. Such a situation is shown to be 
typical of anisotropic inhomogeneities.12  

 
CONCLUSION 

 
The analysis of the distorting effect of large receiving 

apertures in sensing of the turbulent media has shown that 
being reduced to averaging and normalization of output 
signal, it results in low–frequency filtration and 
logarithmically delayed power–law decay of high–
frequency spectral components of the signal frequency 
fluctuations. This fact must be taken into account when 
interpreting the results of sensing in optical and microwave 
ranges and diagnostics of media. Taking into account the 
existing direct correlation between the frequency 
fluctuations of the field and the direction of radiation 
arrival, the obtained results can be generalized for 
describing the fluctuations of the angles of arrival of 
radiation in the turbulent media in the spatial spectral 
analysis of the wave fields received by large–aperture 
systems.  
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