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We present some results of theoretical and experimental studies of light 

absorption by random fractal clusters of quasispherical silver particles 5 nm in radius. 
Aggregation of particles in clusters is found to be accompanied by the appearance of a 
long–wave wing in the absorption spectra, while the absorption at the frequency 
corresponding to absorption by a monomer decreases. The results of calculation of the 
wing shape by a technique of bonded dipoles describe fairly well the experimental 
data. The absorption band broadening is nonuniform, what is well confirmed by the 
experiments on burning out of spectral and polarization–selective dips in the 
absorption spectra of clusters.  

 
INTRODUCTION 

 
In the process of association of solid particles that 

diffuse through gas or liquid, clusters can be formed from a 
lot of primary monomer particles. Prolonged process of 
aggregation results in the formation of fractal structures.1 

Studying the optical properties of cluster structures is of 
interest for various scientific fields such as physics of the 
atmosphere and water media, creation of nonlinear optical 
and recording media, analysis of trace impurities, and 
catalysis.  

The clusters of noble–metal particles are very 
convenient medium for investigation, because the techniques 
of preparation of samples are well developed, the material 
constants are known and the problem of oxidizing does not 
become pressing. In experiments with clusters of noble–
metal particles a number of interesting effects were elicited. 
Thus the effect of giant Raman scattering of light is well 
known.2 In the process of aggregation of colloid silver 
particles in clusters a considerable increase in the efficiency 
of degenerate four–photon scattering was observed.3. 
Selective threshold photo–modification of clusters of silver 
particles was discovered in Ref. 4. Irradiation of clusters of 
silver particles by a high–power laser pulse results in 
burning out a dip in their absorption spectrum near the 
laser radiation wavelength. This dip is primarily observed 
for radiation having the same polarization as the linear laser 
one. The appearance of the dip correlates with changes in 
the cluster structure.5 

Aggregation is accompanied by the large broadening of 
the absorption spectrum of the colloid solution. This fact 
was repeated noted (see Ref. 2), but the satistactory 
theoretical description of the spectrum was lacking.  

In this paper we develop the procedure for calculation 
of the absorption spectrum of clusters and compare the 
results of calculation with the data obtained in experiment 
carried out with the silver hydrosoles.  

As a rule, the existing natural clusters consist of 
different particles of very complex shape (the exception is 
some types of the so–called regular clusters, for example, 
consisting of ice crystals or snowflakes). Theoretical 
description of the optical properties of such clusters is a 
serious problem. There exists, however, a simple physical 
model that enables one to describe qualitatively and  

quantitatively the cluster properties observed in experiment. 
This model is based on the assumption that the cluster 
consists of uniform particles. In spite of very abstract 
character, this assumption is sufficiently universal. For 
example, when cluster consists of highly prolate particles, 
each of these particles can be represented smaller spherical 
particles. In general, as shown in Refs. 6 and 7, the optical 
properties of dielectric particle of arbitrary shape can be 
approximated well by an ensemble of smaller spherical 
particles embedded at sites in the cubic lattice and bounded 
by the surface of a primary particle.  

In the theoretical section of this paper we accept in 
general a hypothesis that monomers are spherical and 
uniform. In addition we assume that radii of monomers are 
small compared with the wavelength of the exciting 
radiation. This assumption is valid for a great variety of 
clusters. The clusters of silver particles discussed in 
experimental section consist of monomers whose diameters 
are of the order of 10 nm while the wavelength in the 
spectral range area under investigation varies from 200 to 
1200 nm. We note that the cluster dimensions as a whole 
may be rather large compared with the wavelength.  

 

1. THEORY 

 
1.1 Construction of a model. Let us consider the 

cluster that contains N spherical monomers with the 
permittivity ε placed in vacuum so that the permittivity ε(r) 
is defined as 
 

ε(r) = 
⎩
⎨
⎧ ε ,  r ∈ Vi ,  i = 1, ..., N ,

1 ,  r ∉ Vi ,        
 (1) 

 
where Vi, is the volume occupied by the ith particle. The 

volume Vi is bounded by a sphere of radius a centered at 

the point ri. The geometry of cluster is completely 

determined by the vectors (r1, ..., rN) for such a problem 

formulation. We denote by v the volume occupied by an 
individual monomer being equal to 4π a3/3. The interaction 
of a monochromatic electromagnetic field (temporal 
dependence of the form exp(–iωt) is further omitted) with a 
cluster is described by the wave equation 
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[Δ + k2 ε(r)] E(r) = 0 , (2) 
 
where κ = ω / c. By entering the vector of polarization 
P(r), we rewrite Eq. (2) in the form 
 

[Δ + k2] E(r) = – 4 π k2 P(r) , (3) 
 

P(r) = 
ε(r) – 1

4 π  E(r) . (4) 

 

Let G
∧
(r, r′) / 4πk2 is the Green's dyad function of the 

system of equations (3). The factor 1/4πk2 is entered for 
convenience. Then instead of differential equation (3) we 
derive the integral equation of the following form: 
 

E(r) = Einc(r) + ∑
i=1

N
 ⌡⌠
Vi

 G
∧
(r, r′) P(r′) dr′ , (5) 

 

where the incident wave field Einc(r) is the solution of 

homogeneous wave equation (3). We assume that 
 
Einc(r) = E0 exp (i k r) , (6) 
 

which corresponds to excitation of a cluster by a plane 
monochromatic wave. The relation between E(r) and P(r) is 
given by expression (4) with dielectric function (1). We 
note that Eq. (5) is integrated only over the domains in 
which ε(r) = ε. 

The Green's function has simple physical sense. When 
a point dipole oscillating with the frequency ω and 
amplitude d is placed at the point r, the radiation field of 

this dipole at the point r will be G(r, r′,) d. Thus 
interpretation of integral equation (5) is that the total field 
at the point r is the super position of the external (exciting) 
radiation field and the field created by the dipole moments 

P(r′) dr′, distributed over the volumes Vi.  

The integral equation (5) compared with Eq. (3) has 
simpler physical sense, which is why it is more convenient 
for analysis. In addition, it contains the volumes Vi as the 

domains of integration in an explicit form. This enables one 
to use this equation for derivation of approximate solutions 
based on sphericity of these volumes.  

Let us write down the explicit expression for G
∧
. The 

action of this operator on the arbitrary vector d is 
determined by the following formulas: 
 

G
∧
(r, r′) = G

∧
(r – r′), (7) 

 

G
∧
(R) d=k3 

⎣
⎡

⎦
⎤A(k R) d+B(k R) 

(d R) R

R2 –
4 π
3  δ(R), (8) 

 

A(x) = [ ]
1
x + 

i

x2 – 
1

x3  exp (i x) , (9) 

 

B(x) = [ ]– 
1
x + 

3 i

x2  – 
3

x3  exp (i x) . (10) 

 
We note the following impotant property of the 

operator G
∧
:  

 

⌡⌠
Vi

 G
∧
(rj, r′) dr′ =  

= 
⎩⎪
⎨
⎪⎧ν G

∧
(rj, ri) ,            i ≠ j ,

–(4 π/3) [3+2 exp (i k a) (i k a – 1)] , i = j .
 

 (11à)
 (11b)

 

 

Formula (11b) is the exact one for arbitrary 
relations between a and λ, where λ = 2π / k is the 

wavelength. Taking into account that a � λ (k a � 1), 

Eq. (11b) transforms into a relation.  
 

⌡⌠
Vi

 G
∧
(ri, r′) dr′ = –4 π / 3 . (11c) 

 

1.2. Derivation of the equation of bonded dipoles. In 
this section we use relations (11) to pass over from integral 
equation (5) to the system of linear algebraic equations in 
the dipole approximation.  

The essence of the dipole approximation is the 
assumption of constancy of the polarization vector P(r) and 
field inside each volume Vi:  
 

P(r) = Pi, E(r) = 4 π Pi / (ε – 1),  
 

Einc(r) = E0 exp (i k ri), for r ∈ Vi . (12) 
 

The dipole approximation for an isolated particle is 
justified when the wavelength of the exciting radiation is 
much greater than the particle radius. Generally speaking, 
this condition is insufficient for the cluster. Really, the 
dimentions of field inhomogeneities created by the dipole 
radiation of particles may be comparable to their 
dimensions, even though the wavelenght of the external 
radiation is sufficiently large. The strong inhomogeneities of 
the field are created in the cluster only by the particles in 
close proximity (the nearest neighbors) for which the 
distance R in formula (8) describing the dipole radiation 
changes within the size of a particle from 0 (point of 
contact) to 4a (diametrically opposite points).  

To overcome this difficulty, we applied the following 
method. The distance between the centers of two nearest 
particles was taken to be less than the double radius 2α of 
particles. In such a way, we allow for the fact that the field 
dimensions actually do not coincide with the particle size 
due to inhomogeneous polarization inside each particle. 
More specifically, the highest degree of polarization (in the 
volume of a particle) is reached close to the point of contact 
of this particle with its nearest neighbor rather than in its 
geometrical center. Usually 6,7 the relation between b and a 
is chosen starting from the condition of equality of the 
volume of a cubic cell with the edge b to the volume of a 
ball of radius a.  

It then follows that 
 
b / a = (4 π / 3)1/3 ≈ 1.612 . (13) 
 

As shown in Refs. 6 and 7, the dipole approximation 
together with condition (13), for the fractal three–
dimensional clusters (fractal dimensionality D = 3) 
furnishes correct results. One–dimensional linear monomers 

(D = 1) were studied by Markel′,8 who demonstrated that 
in this case b/a = 1.688 must be chosen to provide the 
correct results. In intermediate cases (1 <D < 3) the values 
of b/a should probably be taken in the range from 1.612 to  
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1.688. Since the speed of b/a is very small, we will further 
use relation (13). It provides good agreement with 
experiment for clusters of silver particles (D = 1.8).  

Substituting relation (12) in Eq. (5) and using 
Eqs. (11a) and (11c), we obtain the following linear system 
of equations for the dipole moments of monomers di = v Pi:   

 

di = χ 
⎣
⎡

⎦
⎤E0 μi + ∑

i≠j

 G
∧
(ri, rj) dj  , (14) 

 

χ = 
3 v
4 π 

ε – 1
ε + 2

 = a3 
e – 1
ε + 2

 , (15) 

 
μi = exp (i k ri) . (16) 

 
It is seen from formula (15) that χ is the dipole 

susceptibility of a dielectric ball of radius a in the 
quasistatic approximation. With the use of more exact 
expression (11b) instead of Eq. (11c), the formula for χ 
assumes the following form: 
 

χ = a3 
ε – 1

ε + 2 + 2(ε – 1) [1 + (i k a – 1) exp (i k a)] . (17) 

 
Formula (17) is the next term in the Mie expansion of 

the dipole polarizability χ in the parameter ka. It allows for 
self–action of an oscillating dipole and so unlike formula 
(15) fits the optical theorem and obeys the law of 
conservation of energy.  

Equation (14) is called the equation of bonded 
dipoles. Actually it is a 3N–dimensional system of linear 
algebraic equations in Descartes' components of the vector 
of dipole moments diα with symmetrical complex matrix. 

The solution of this system is a set of the complex vectors 
d1,..., dN that can be used for calculating the characteristics 

of optical cluster.  
1.3. Optical cross sections. The amplitude of 

scattering f(s) in the direction of arbitrary unit vector s  

f(s) = k2 ∑
i=1

N
 [di – (di s) s] exp (–i k s ri) . (18) 

 
is of fundamental significance in calculation of the optical 
cross sections of extinction σe, scattering σs and absorption 

σa. The following relation 

 
dσs / dΩ = ⏐f(s)⏐2 , (19) 

 
holds for the differential scattering cross section, where dΩ 
is the element of the solid angle in the direction of 
scattering. The total scattering cross section can be derived 
by integration of Eq. (19), while the cross sections of 
extinction σe and absorption σa fit the optical theorem 

 

σs = ⌡⌠ ⏐f(s)⏐2 dΩ , (20) 

 

σe = 
4 π
k  Im [f(k / κ) E*

0
] /⏐E0⏐2 , (21) 

 
σa = σe – σs . (22) 

 
 

By integration of Eq. (20) with the use of formula 
(18) for f we derive the expression for the extinction and 
absorption cross sections  
 

σe = 
4 π k
⎢E0⎢2

 Im ∑
i=1

N

 μ*
i
 di E*

0
 , (23) 

 

σa = 
4 π k
⎢E0⎢2

 [Im (1 / χ*) – 2 k3 / 3] ∑
i=1

N

 ⏐di⏐
2 . (24) 

 
Formulas (20) and (21) and equation (14) provide a 

basis for the numerical calculation of the optical 
characteristics of clusters.  

 
2. NUMERICAL SIMULATION  

 
2.1 Simulation of the geometry of fractal clusters. 

To construct the model of random fractal clusters, we used 
the method of random wanderings without self–intersecting 
trajectories. The model yields the fractal dimensionality of 
cluster being equal to 1.78, which is close to the fractal 
dimensionality of the experimentally studied clusters of 
silver particles (see below). The experimentally measured 
radius a of monomers was 5 nm. The condition on the 
absence of self–intersecting trajectories was that the 
distances between any twomonomers may be no less than a 
certain value b chosen from formula (13). It then follows 
that b = 1.612 a = 8.06 nm. If this condition was violated 
at the next step of random wanderings, it would be simply 
rejected. The step size in the method of random wanderings 
was also equal to b.  

A totality of 25 random realizations of clusters were 
constructed, each contained N = 30 monomers. All solutions 
were further averaged over these random realizations.  

2.2. Calculation of dipole susceptibility of a 
monomer. To calculate the dipole susceptibility of a 
monomer χ that enters equation of bonded dipoles (17), 
we used refined formula (17). It was assumed that the 
clusters were placed in water, as it was in the 
experiment. We borrowed the tabulated values of 
permittivity of silver ε (for bulk sample) from Ref. 9 and 
corrected then with due regard to the dimensionality 
effect that may be important for small metallic particles. 
The essence of this effect is that the conduction electrons 
are scattered at the boundary of a particle. We took into 
account the dimensionality effect in the following way. 
At first in the tabulated values of ε we separated the 
contribution of free electrons from the contribution 
corresponding to interzonal transitions. The former is 
described by the Drude formula  
 
ε = 1 – ω2

p / ω (ω + i Γ). (25) 

 
Further we substitute Ã + νF / a for Ã where νF is the 

Fermi velocity. Thereafter the corrected contribution of free 
electrons was added to the contribution corresponding to 
interzonal transitions to obtain the total permittivity. For 
silver we have λp = 2πc / ωp=136.1 nm, Ã / ωp = 0.0019, 

and νF / c = 0.0047 (c is the light speed). With such 

values of the parameters for a = 5 nm the dimensionality 
effect results in the considerable change of permittivity. We 
note that dimensionality effect for scattering on isolated 
metallic particles was experimentally tested.10  
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2.3. Simulation of spectra and threshold photo –
 modification of clusters. The equation of the bonded dipoles 
was solved in two ways. The first square–root method is the 

direct exact method for inverting the matrix G
∧
 of dipole 

interaction that effectively uses the symmetry of this matrix.  
The second method of expansion in eigenvectors is 

iterative. It is applicable only to the real matrices G
∧
 and 

enables one to shorten considerably the machine time.11 The 

matrix G
∧
 is real when the dimensions of a cluster as a whole 

are much smaller than the wavelength. In calculations by this 
method from formulas (9) and (10) we discarded the terms 
proportional to 1/x and 1/x2 (the contribution of the wave 
and intermediate zones) and assumed exp (ix) = 1.  

Both methods gave very close results though the 
dimensions of clusters under study were only slightly smaller 
than the wavelength. This confirms the conclusion of Ref. 12 
that interaction clusters with the fractal dimensionality being 
less than 2 with the wave zone is insignificant.  

We solved equation (12) for the wavelengths varying 
from 200 to 1400 nm. Further we used the obtained solutions 
to calculate the extinction cross sections according to formula 
(23). Efficiency of extinction Qe shown in Fig. 1 as a function 

of λ is connected with it by the relation Qe = σe / Nπa2.  

We simulate the threshold photo–modification in the 
following way. The formula (24) shows that the energy 
absorbed by the ith monomer is proportional to ⏐ di⏐

2. For 

non–interacting monomers ⏐ di⏐
2 = ⏐ χE0⏐2 = const. 

However, taking into account the effect of interaction, the 
value of ⏐ di⏐

2 in a cluster under goes strong fluctuations and 

may considerably exceed ⏐ χE0⏐2. The monomers that satisfy 

the condition ⏐ di⏐
2 / ⏐ χE0⏐2> h were removed from the 

cluster. (They were considered to be evaporated). We choose 
the value of h in such a way that about 5 clusters were 
removed from the totality of 25 clusters, which corresponded 
to a little excess of this value over the threshold.  

After the monomers were removed, the cluster spectrum 
was calculated again on two different states of polarization: 
parallel and perpendicular to the polarization of the radiation  

burning out a dip. Thereafter the difference spectra 
(Fig. 1) were calculated. As can be seen from Fig. 1, 
photo–modification results in the appearance of spectral 
and polarization–selective dips in the spectrum of 
extinction.  

 

3. EXPERIMENT 
 

The silver hydrosoles were prepared by the boron–
hydride method13 and their diagnostics was carried out with 
an electron microscope. The newly-prepared colloid solution 
contained isolated silver elementary particles of nearly 
spherical shape 10–20 nm in diameter whose number density 

was 1012 cm–3. In the course of time the particles in the 
colloid aggregate in clusters consisting of tens or hundreds of 
monomers. A portion of monomers in our solution did not 
aggregate or weakly aggregate (clusters contained only a few 
monomers). Samples were stabilized by addition of gelatin in 
the solution. The absorption spectra were recorded with a 
spectrophotometer in a cavity 1 cm thick.  

The results are shown in Fig. 2. The absorption spectrum 
of the isolated silver particles in water reaches a maximum 
near λ = 400 nm. The shape of the measured spectrum agrees 
fairly well with the results of calculation. In the process of 
aggregation particles in clusters, a long–wave wing occurs in 
the spectrum. The intensity and width of the wing increase for 
higher degree of aggregation. Figure 2 shows that the shape of 
the spectrum in the wing agrees fairly well with the results of 
calculation. At the same time the measured maximum value of 
absorption by the aggregated hydrosole of monomers is much 
higher than the calculated one. Apparently the excess 
absorption is due to the monomers which did not aggregate in 
the solution. When clusters are irradiated by laser pulses  
5–10 ns long with energy being approximately equal to 
10 mJ/cm2 at the wavelengths corresponding to wing 
(λ

l
 = 532 , 576, and 1064 nm), the dip is burnt out in the 

absorption spectrum near λl (see curve 1 in Fig. 3) when the 

pulse has polarization the same as laser does. When the laser 
wavelength (λl = 437 nm) falls within the absorption 
maximum, the absorption on irradiation decreases everywhere 
over the region of the long–wave wing and increases in the 
region of maximum (see curve 2 in Fig. 3).  

 

 
FIG. 1. Calculated difference spectra of clusters before and after irradiation by a high–power laser pulse at λ = 532 nm. 
The decrease of the absorption corresponds to the positive direction of the ordinate (spectral dip). Solid curve is for the 
same polarization as that of laser pulse (e ⎢⎢el); and dashed curve is for the orthogonal polarization (e⊥el).  
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FIG. 2. Theoretical spectra of monomers (dashed curve) and clusters consisting of 30 monomers (solid curve) compared 
with the experimental spectra of monomers (small squares) and clusters (small circles). The fractal dimensionality of 
clusters is close to 1.8.  
 

The results obtained can be interpreted in the following 
way. As follows from the foregoing theory, the wing in the 
spectrum occurs due to the dipole interaction of monomers in a 
cluster. The random of location of monomers results in the 
fact that different local configurations of monomers absorb 
radiation at different wavelengths. This means that the 
spectrum in the region of wing is nonuniformly broadened. 
When the radiation intensity exceeds a certain threshold 
value, the absorbing fragment of cluster is modified in such a 
way that it tunes away from resonance with the field. 
Accordingly, the dip occurs in the spectrum. The absorption at 
the frequency of maximum is cooperative in character.11 The 
absorbed energy is smoothed out among monomers. A cluster 
dissociates upon exposure to radiation, and accordingly the 
absorption decreases everywhere over the region of the wing, 
while the maximum absorption increases.  

 

The results of calculation of the spectrum of dips 
shown in Fig. 2 are in qualitative agreement with the 
experiment. The agreement is observed in the position of 
the dip and polarization characteristics. However, the 
experimentally measured dips are elongated in the long–
wave region. Furthermore, the increase in the optical 
density of the irradiated sample is observed in the region 
around λ = 400nm in the measured difference spectrum, 
whereas the results of calculation show the increase in the 
density on the long–wave side of the dip. Apparently, a 
number of factors are operating to affect the experiment, 
which were neglected in the model. Among there factors 
are striction forces occurring in the cluster medium upon 
exposure to a powerful laser radiation field. The detailed 
discussion of this problem falls outside the scope of this 
paper.  

 

 
 

FIG. 3. Difference absorption spectra of irradiated and non–irradiated cluster samples. The cavity is 1 mm thick. The 
laser radiation wavelength is λl = 576 (1) and λl = 437 nm (2). ΔD denotes a change in the optical density of sample, and 

D0 denotes its optical density before irradiation. 
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CONCLUSION 
 
Both theoretically and experimentally we have shown 

that broad wings occur in the absorption spectra of random 
clusters consisting of loosely bound particles. The wings of the 
spectrum are nonuniformly broadened. The results of 
calculation of the spectrum of clusters of silver particles by the 
bonded dipole method indicate the presence of wing that 
agrees with the data of measurements. The theoretical 
conclusion about an important role of cooperative interaction 
of monomers as a result of absorption of radiation at the 
frequency of maximum is experimentally confirmed. The 
authors would like to express their gratitude to S.G. Rautian 
for helpful discussion of results and to A.I. Plekhanov for his 
assistance in the performance of the experiment. 

This work is a part of the Applied Scientific Program of 
Russian Federation on Physics of Lasers and Laser Systems.  
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