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This paper demonstrates the efficiency of using a large bimorph adaptive mirror 

for correction of the large–scale low–frequency distortions of the wavefront. The 
correction of the low–order optical aberrations by this mirror is computer simulated. 
Theoretical approach to the problem of adaptive correction of distortions is described. 
The comparative analysis of the efficiency of bimorph mirror and adaptive mirror with 
discrete electromechanical actuators has been carried out. The simple and effective 
way of forming the mosaic bimorph structure using the multilayer piezoelectric 
elements is proposed. 

 
1. INTRODUCTION 

 
The construction of a large bimorph adaptive mirror 

of astronomic telescope was considered in Ref. 1. Its 
prototype was a mirror fabricated from glassceramic with 
a diameter of 3.3 m and inner aperture of 0.5 m. It was 
equipped with the passive vertical and horizontal 
unloading system and 54 electromechanical actuators for 
control over its shape. Without changing a construction 
 

(unloading system and geometric size), it was proposed to 
replace the controlling electromechanical actuators by a solid 
piezoelectric mosaic layer fabricated from hexagonal 
piezoceramic plates 1 mm thick arranged on the back  
side of the glassceramic mirror. The response functions of 
controlling electrodes, the influence of the ambient 
temperature on the deformed state of the reflecting  
surface, and the frequency responses of the mirror were 
calculated. 
 

 
 

FIG. 1. Typical response function of the large bimorph adaptive mirror for a controlling voltage of 300 V and electrode 
No. 1. Span (S), standard deviation (SD), and maximum and minimum values are given in micrometers. 
 

 
FIG. 2. Segmentation of controlling electrodes on the 
piezoceramic surface. 

 

The typical response function of a large bimorph 
adaptive mirror is shown in Fig. 1 for a controlling 
voltage of 300 V in two different ways: as the isometric 
projection and the contours of equal response level. The 
span (S), standard deviation (SD), and maximum and 
minimum response functions were measured in the 
direction along the normal to the reflecting surface of the 
mirror. The segmentation of the controlling electrodes on 
the piezoceramic surface is shown in Fig. 2. The resonance 
frequency of the first adaptive mirror was 1 Hz. 
Calculations of the influence of the ambient temperature 
variations on the deformed state of the mirror showed 
that the span of the displacement of the reflecting surface 
reached 3.96 μm as temperature changed by 1°C. 

Let us analyze the efficiency of the large bimorph 
adaptive mirror, namely, the quality of compensation for 
the distortions of the wavefront, using the results 
obtained in Ref. 1.  
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2. THEORETICAL APPROACH TO AN ANALYSIS  
OF THE EFFICIENCY OF COMPENSATION FOR THE 

WAVEFRONT DISTORTIONS 
 
Let W(r) be the wavefront of radiation incident on an 

adaptive mirror, and ΔW(r) be the wavefront of the 
reflected radiation. Let us control the adaptive mirror in 
such a way that the residual root–mean–square error σ in 
the correction be minimum, i.e., 
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where SΩ is the area of the adaptive mirror aperture, N is 
the number of the control channels of the adaptive mirror, 
and Ui is the controlling voltage in the ith control channel. 

For the reflected radiation the following relation is 
valid:  

 

ΔW(r) =

 

W(r) – 
4π
λ  ∑

i=1

N

 Ui fi(r), (2) 

 

where λ is the radiation wavelength and fi(r) is the ith 

response function for maximum Ui. The normal (or almost 

normal) incidence of radiation on the adaptive mirror is 
assumed in Eq. (2), and the parameters Ui are taken to be 

normalized to their maximum value, so that the condition 
 

–1 ≤ Ui ≤ 1, i = 1, . . . , N . (3) 
 

is satisfied. Since the wavefront is determined to within the 
constant factor, without loss of generality we may assume 
the mean values of all the above–considered functions to be 
equal to zero. 

In what follows that the condition of minimization of 
the residual root–mean–square error may be written in the 
form
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where Ai = 
4π
λ  ⋅ Ui, i = 1, ..., N . 

Let us represent W(r) in the form of a series in 
Zernike polynomials1 Zi(r). Practically it is suffice to take 

into account the first terms in the expansion. Let M be the 
number of Zernike polynomials sufficient for representation 
of the function W(r) and M > N. Then 
 

W(r) = ∑
i=1

M

 αi Zi(r) , (5) 

 

αi = ⌡⌠
Ωa

 W(r) Zi(r) dr . (6) 

 

Thus we have a vector 
 

α = (α1, . . . , αM) , (7) 
 

which specifies the incident wavefront. 

Let us expand each from the N response functions fi(r) 
in an analogous series 
 

fj(r) = ∑
i=1

M

 Fij Zi(r), j = 1, . . . , N. (8) 

 

Therefore, we have N vectors of Fj : 
 

Fj = (F1j , . . . , FMj), j = 1, . . . , N, (9) 
 

and each vector describes the individual response function. 
Let us rewrite expression (2) in the form 

 

Δ = α – F
∧

 A, (10) 
 

where  
 

Δ = (Δ1, . . . , ΔM) (11) 
 

is the vector describing the reflected radiation with the 
wavefront ΔW(r); in addition, 
 

ΔW(r) = ∑
i=1

M

 Δi Zi(r), (12) 

A = (A1, . . . , AN) (13) 
 

is the vector describing the controlling forces, and 
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is the matrix whose columns are the vectors Fj . 

Condition (4) can be rewritten in the form 
 

min ∑
i=1

M

 Δ2
i, (15) 

 

where the minimum is meant with respect to all possible 
values of the vector A. Obviously, condition (15) can be 
written in the form  

∂
∂Aκ
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Taking into account Eq. (10), we derive the system of 
differential equations 
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After differentiation, we derive the linear system of 
equations 
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for the unknown values Aj , j = 1, ..., N . Having solved 

system (18), we obviously find the vector A0: 
 

A0 = (A01, . . . , A0N), (19) 
 

for which condition (15) is satisfied. 
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We note that a set of the solution of system (18) 
depends on the relationship between the number of the 
response functions N and that of Zernike polynomials M. If 
N > M, then Eq. (18) has no unique solution. Let us show 
it. Let us write Eq. (18) in the form 
 

∑
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Changing the summation order in the left side, we derive 
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Recall that Fκ is the M–dimensional vector with the 
coordinates on the orthonormal basis Zj , j = 1, ..., M [see 

Eq. (19)]. Then the scalar product of two vectors can be 
written as 
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Therefore, we derive from Eq. (20) 
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The principal matrix of the linear system of equations (23) 
has the form 
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Obviously, in this case (N > M) a set of vectors Fj , 

j = 1, ..., N is linearly dependent since the dimension of the 
orthonormal basis Zi, i = 1, ..., M is equal to M. This 

means that at least one vector Fj can be represented in the 

form of linear combination of the others. Let it be the 
vector Fn 
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where pi , i = 1, ..., N, i ≠ n are the coefficients of the 

linear combination. Then matrix (24) assumes the form 
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 (26) 

Taking pi out of the scalar product, we reduce the nth row 

of matrix (26) to the form 
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Expression (27) is nothing but the linear combination of the 
rows of matrix (26). Therefore, the determinant of 
matrix (24) is equal to zero for N > M, and in this case 
system (18) has no unique solution. In addition, 
 

min
A
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i=1

M

 Δ2
i = 0. (28) 

 
In this case we find the vector–solution A0, but cannot say 

a word about the accuracy of correction. 
For N < M system (18) has a unique solution for 

which we can calculate Eq. (15) and determine the 
minimum error in correction. 

 
3. COMPUTER SIMULATION 

 
In computer simulation the distortions of the 

radiation incident on the adaptive mirror were assigned in 
the form of model wavefronts described by Zernike 
polynomials, namely, 

 
– defocusing C4 3(2 r 2 – 1), 

– astigmatism C6 6 r 2cos2θ, 

– coma C8 8(3 r 2 – 2 r)cosθ, 

– trefoil C10 8 r 3cos3θ, and 

– spherical aberration C11 5(6 r 4 – 6 r 2 + 1). 

 
We have considered the aberrations only in cosine 

representation since the results for the sine representation 
are analogous for our segmentation of controlling 
electrodes due to the symmetry of the problem. 

The number of the response functions N is equal to 
288 for the above–considered large bimorph adaptive 
mirror. We used 55 Zernike polynomials for the expansion 
of functions. Symmetry of the problem was used in the 
numerical solution of system (18) to decrease the number 
of the response functions (i.e., to satisfy the condition 
N < M). It is clear that due to axial symmetry of 
defocusing and spherical aberration the controlling 
voltages on the electrodes arranged in one circle are equal 
in optimal correcting. For this reason these aberrations 
were controlled by 12 electrodes, i.e., electrodes arranged 
in one circle were interconnected forming one electrode. 
Therefore, the condition N < M was satisfied and the 
residual error in the correction could be determined. 

The fourth–order symmetry of coma was used for its 
correction taking into account the sign of deformation of 
the reflecting mirror surface (Fig. 3a). It is seen from 
Fig. 3 that when the deformation due to coma is equal to 
+S at a given point of the surface, deformation in the 
other three points, which are conjugate to the first point, 
is also known. Therefore, the number of controlling 
electrodes is 4 times less. In this case it is suffice to 
interconnect the electrodes as shown in Fig. 3b in order 
to satisfy the condition N < M, and, most likely, the 
quality of correction will deteriorate. The number of the 
controlling electrodes in the case of coma was 36. 
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FIG. 3. Symmetry of coma (a) and the assembly of 
controlling electrode used for correction (b). 

 
The symmetry of astigmatism was also taken into 

account together with the sign of deformation in correcting 
the astigmatism. The number of electrodes was 36, and the 
condition N < M was satisfied.  

The symmetry of trefoil with allowance for its sign 
made it possible to decrease the number of electrodes to 24, 
which also provided the condition N < M. 

The results of correction of the above–enumerated 
aberrations with the large bimorph adaptive mirror are 
shown in Fig. 4 for normal incidence of radiation. The 
maximum controlling voltage used for correction was equal 
to ±300 V. 

 
 

FIG. 4. Residual root–mean–square error in correcting 
the third–order aberrations by means of the large bimorph 
adaptive mirror vs. the span of aberrations: 1) spherical 
aberration, 2) trefoil, 3) astigmatism, 4) coma, and 
5) defocusing. 

 
The maximum values of the span (S) of the third–

order aberrations are presented in Table I. The root–mean–
square error in correcting these aberrations by means of the 
above–considered mirror does not exceed λ/20 
(λ = 0.55 μm). The number of controlling electrodes for 
each type of aberration is also presented. The analogous 
data for the adaptive mirror with 54 electromechanical 
electrodes are also given in Table I for comparison. 

 
TABLE I. 

 

Type of aberration Representation form 
Span of aberrations of the adaptive 

mirror with 54 actuators, μm Bimorph adaptive mirror 
   S, μm Number of electrodes for correction

Defocusing C4 3(2 r 2 – 1) 2.4 69 12 

Astigmatism C6 6 r 2cos2θ 9.1 7.2 36 

Coma C8 8(3 r 2 – 2 r)cosθ 1.1 1  36 

Trefoil C10 8 r 3cos3θ   4.8 24 

Spherical aberration C11 5(6 r 4 – 2 r 2 + 1) 0.3 8.5 12 
 

4. DISCUSSION OF RESULTS 
 

It is well known that the large bimorph mirror has the 
highest quality of correction of the axially symmetric 
aberrations, i.e., defocusing and spherical aberration. 
Correction of trefoil, astigmatism, and coma is less effective 
and is a few micrometers. We also note that maximum 
voltages on the controlling electrodes did not exceed ±300 V 
in our investigations, though it is not a limit for the given 
piezoceramics 1 mm thick. Deformation of the reflected 
surface of large bimorph adaptive mirror is greater for larger 
controlling voltage; therefore, the correction of distortions 
is more effective. We used the voltage up to 300 V for 
control over the mirror only because, as it seems to us, 
difficulties arise in the construction of the control system 
for larger voltage. 

It is interesting to compare the results obtained with 
the aforementioned data for the analogous mirror with 54 
electromechanical actuators. The results of correction with 
these two mirrors are comparable only in the case of  

astigmatism and coma. The advantage of the bimorph 
mirror is very essential in correction of defocusing and 
spherical aberration. 

Recall that the results given in this paper and in 
Ref. 1 confirm the high efficiency of the large bimorph 
adaptive mirror in correcting the large–scale low–frequency 
distortions of the wavefront. These results were obtained for 
the controlling mosaic piezoelectric layer 1 mm thick 
(thickness of the mirror plate was 78 mm). Such a 
relationship between the thicknesses was obviously not 
optimal and was selected only to demonstrate the 
capabilities of the large bimorph adaptive mirror. A 
multilayer mosaic piezoelectric structure was proposed in 
Ref. 1 to decrease the controlling voltage. Evidently, 
analogous approach can be applied to obtain the optimal 
thickness of the piezoelectric structure. 

Here we would like to discuss another variant of the 
piezoelectric structure of the large mirror of the telescope. 
It is the following. As before, one mosaic piezoelectric layer 
is used. Its thickness is preliminary optimized for the given  
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thickness of the mirror plate against the criterion of the 
maximum of controllable deformations of the reflecting 
surface. However, the elements are fabricated in the form of 
multilayer composition with as small thickness of piezoceramic 
film as possible and the optimal total thickness. The authors 
are familiar with some experiments in which the films with 
the thickness of the order of 20–40 μm were used. The 
element can be pressed into plastics similar to the above–
described construction of the controlling piezoelectric 
actuators.2 Such elements are very convenient in operation and 
it is not difficult to form the mosaic piezoelectric structure of 
the large mirror of the telescope on their basis. The transverse 
size of such a multilayer element can likely be of the order of 
50 mm (corresponding to the typical diameter of commercial 
piezoelectric plates), while the limiting controlling voltage can 
be a few tens of volts. It is not of necessity to interconnect the 
 

Individual elements when forming the mosaic piezoelectric 
structure on the back side of the large mirror, only 
minimum gaps must be provided between neighbouring 
elements for best filling of the back surface of the mirror. 

It seems to us that analogous construction of the 
large bimorph mirror will provide a very high amplitude 
of the controllable deformations of the reflecting surface. 
However, additional computer calculations are needed to 
obtain the numerical estimates. 

 
REFERENCES 

 
1. M.A. Vorontsov and V.I. Shmal'gausen, Principles of 
Adaptive Optics (Nauka, Moscow, 1985), 336 pp. 
2. A.V. Ikramov, S.V. Romanov, I.M. Roshchupkin, et al., 
Opt. Mekh. Prom., No. 5, 60–63 (1992). 
 

 


