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Influence of a flexible mirror construction on the accuracy of reconstructing a 
preset phase surface is studied using numerical simulation method. Estimates of this 
type of a phase corrector for using it as an active element of an adaptive system have 
been made. An optimal configuration and a number of servodrives of a mirror intended 
for compensation for thermal blooming effect are determined for a wide range of the 
beam and propagation path parameters. 

 
1. INTRODUCTION 

 
One of the problems that can arise when designing an 

adaptive optical system is the development of an active 
element (a wave–front corrector) which could meet the 
general requirements to optical devices and satisfy the 
conditions of the problem being solved using such a system. 
In fact, the construction of an adaptive mirror is mainly 
determined by the distortions this mirror is to compensate 
for. As was shown in Ref. 1, the atmospheric turbulence can 
be compensated for with a mirror having 40–60 servodrives 
while thermal blooming can be corrected for using only 6–8 
servodrives.2,3 Since in Ref. 3 compensation for thermal 
defocusing has been analyzed for beams with the intensity 
varied within a narrow range it is impossible to estimate the 
efficiency of the mirrors used to compensate for strong 
nonlinear distortions. At the same time there are some 
theoretical investigations of compensation for thermal 
blooming4,5 where a correcting profile was described with 
Zernike polynomials. It was shown that a number of these 
polynomials must be increased with a radiation intensity 
increase to control without the loss of efficiency. That 
means that under conditions of high nonlinearity a 
correcting phase surface has a sufficiently complicated shape 
and one would expect a larger number of servodrives to be 
necessary for its shaping. Thus the problem on determining 
the optimal number of degrees of freedom for an adaptive 
corrector cannot be considered as solved. 

In this paper optimization of a number and 
configuration of disposition of servodrives of an adaptive 
mirror intended for use in a system of correction for the 
laser–beam thermal distortions has been made based on 
numerical simulations. To this end, we have estimated when 
varying the mirror construction the approximation accuracy 
for surfaces of different complexity and determined the 
effect of the corrector on the efficiency of compensation for 
thermal lens. 

 
2. A MODEL 

 
In the numerical experiments a mirror model was used 

in the form of a flexible thin square plate hinged at its 
center.6 The plate deformation W(x, y) was described with 
a biharmonic equation7  

 

D⎝
⎛

⎠
⎞∂4W

∂x4  + 2 
∂4W

∂x2 ∂y2 + 
∂4W
∂y4  = f(x, y) , (1) 

 

where D = Eh3(12(1 – σ2)) is the cylindrical rigidity; E is 
the Young modulus; h is the plate thickness; σ is the 
Poisson coefficient; f is the transversly distributed load (in 
the calculations we used the values of all coefficients 
characteristic of a copper plate). The conditions of hinging 
center are as follows: 
 

W(x0, y0) = 0, D⎝
⎛

⎠
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∂n2  + σ 
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where x0, y0 are the center coordinates; ∂/∂n and ∂/∂τ are 
the derivatives with respect to a normal and tangent, 
respectively. The equation was solved numerically using the 
method of finite elements.8 As compared to the previous 
papers3,9 a number of nodes of the calculational grid along 
each of the coordinates was increased to 13. The dimensions 
chosen enabled us to vary a number of servodrives within a 
sufficiently wide range and to choose different 
configurations of their attachment. 

Using this method we have constructed numerical models 
for six mirrors depicted schematically in Figs. 1 a–e. The 
mirrors had the following peculiarities: (a) a model with a 
minimum number of control coordinates (as shown in Ref. 3 
fewer number of servodrives does not provide for 
compensation even for moderate thermal nonlinearity); (b) a 
number of servodrives is the same as in the case (a) but the 
distance between the drives and the center of the mirror is 
smaller, i.e., density of the drives disposition in the central 
portion of the corrector is higher, (c) further increase of 
servodrives density at the central portion; (d) and 
(e) variations of disposition geometry of control points, 
without changing their number; and (f) sharp increase of 
the number of control coordinates due to an increased 
number of drives at the mirror periphery. The density in the 
central portion remained constant. 

The models of flexible plates were used to determine 
the accuracy of reconstructing the surface described by 
Zernike polynomials and in the problem on compensating 
for the stationary thermal blooming. The approximation has 
been performed by matching the mirror surface to the phase 
profile at the points of the servodrives fixing. In correction 
for the effect of thermal lens the beam radius r0 was 1/10 

of the length of the mirror side dm (the grid on which the 

quasioptics problem was solved did not allow us to change 
this ratio). As is seen from Fig. 1, the following parameters  
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of the corrector were varied: density of servodrives in the 
region covered by the beam, their number, and 
configuration of their fixing. In so doing, the models 
constructed made it possible to estimate separately the 
effects of the aforementioned factors on both the precision 
of shaping the assigned profile with a mirror and the 
efficiency of the correction for thermal lens effect. 
 

 
 
FIG. 1. Models of adaptive mirrors. 
 

The surface to be approximated was assigned with the 
polynomials given in Ref. 10 (the representation is in a polar 

system of coordinates): Z1 = 2 rcosΘ (tilt), Z2 = 3 (2 r2 – 1) 

(defocusing), Z3 = 6 r2sin(2Θ) (astigmatism),  

Z4 = 8 (3 r2 – 2 r)sinΘ (coma), Z5 = 6 r3sin(3Θ),  

Z6 = 5 (3 r4 – 2 r2 + 1) (spherical aberration),  

Z7 = 10 (4 r4 – 3 r2)sin(2Θ), Z8 = 10 r4sin(4Θ),  

Z9 = 12 (10 r5 – 12 r3 + 3 r)sinΘ,  

Z10 = 12 (5 r5 – 4 r3)sin(3Θ), Z11 = 12 r5sin(5Θ). We 

changed the numbering since the polynomials obtained by 
rotating the system of coordinates were omitted. The accuracy 
of shaping was characterized by a relative rms error ε: 

 

ε = 

⎩⎪
⎨
⎪
⎧

⎭⎪
⎬
⎪
⎫⌡⌠ ⌡⌠ (ϕ – W)2 f dx dy

⌡⌠ ⌡⌠ ϕ2 f dx dy

1/2

,  (3) 

 
where ϕ is the assigned profile of phase distribution, W is 
the bending of the mirror surface, f = exp(–(x2 + y2)/r2

f) is 

the weighting function, and rf is the radius of the weighting 

function. 
Correction has been calculated for a path with the 

length 0.5 zd, zd is the diffraction length. The path was 

divided into two portions: a portion occupied with a 
distributed thermal lens (the length zNL) and a portion of 

linear propagation with the length zL. Nonlinearity of the 

medium was determined by the parameter Rv (Ref. 3) which 

is proportional to the radiation intensity. A beam in the 
plane z0 = zNL + zL was characterized by a focusing 

criterion which is proportional to the power incident on the 
aperture of given dimensions  

 

J = 
1
P0
⌡⌠ ⌡⌠ ρ(x, y) I(x, y, z0) d x d y , (4) 

 

where P0 is the total power, I is the intensity,  

ρ = exp(–(x2 + y2)/r 20) is the weighting function, and r0 

is the initial radius of the beam. 
The control was performed using the algorithm for a 

modified phase conjugation3 which had some peculiarities in 
application to solving the problem under study. Thus, the 
mirror was used not for phase approximation during the 
control but for shaping the surface determined from the 
correction. That is, an optimal phase surface Uopt(x, y) was 

determined which then was approximated with the mirror. 
Such an approach enabled us, on the one hand, to directly 
estimate the accuracy of shaping sufficiently complicated 
profiles and to determine the reduction of correction quality 
caused by the mirror and, on the other hand, to simplify 
and shorten the calculations. 

 
3. RESULTS 

 
The accuracy of reconstructing the polynomials with 

mirrors b, c (Fig. 1) is illustrated in Fig. 2. Depicted in the 
figures are the values of the rms error ε obtained for 
different radii of the weighting function rf . Similar plots 

for the remaining models are not included into this paper 
since the behavior of the curves is quite similar to the 
results presented here. In particular, when the mirror (a) is 
used the rms error is somewhat larger than that for the 
mirror (b) for all the polynomials. The models c–f (Fig. 1) 
give, in fact, equal values ε for rf = 1/10 dm (i.e., in the 

region occupied with a beam in the quasioptics problem). 
 

 
 

FIG. 2. Accuracy of Zernike polynomials reconstruction 
with mirrors b (a) and c (b) from Fig. 1: ε is the rms 
error, Nz is the number of the Zernike polynomial to be 

reconstructed, rf = 1/10 dm (curve 1), rf = 1/5 dm 

(curve 2), and rf = 1/2 dm (curve 3). 
 

From a comparison of data represented in Fig. 2a and 
b as well as from description of the relevant results for 
other models one can draw a conclusion that the correctors 
(a) and (b) (Fig. 1) in their central portion shape the 
complex surfaces (polynomials with Nz ≥ 9) with lower 

accuracy than the remaining mirrors do. The errors ε at the 
center are almost equal for the models c–f. Since the 
number of polynomials sufficient for compensation for  
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thermal nonlinearity is approximately known5 one can 
assume that the use of mirrors (a) and (b) is reasonable for 
zNL ≈ 0.5zd and R

ν
 ≈ – 20. We may also expect that more 

mirrors of more complicated shapes must be used to correct 
a thin thermal lens with larger values of the parameter R

ν
. 

The efficiency of compensation for thermal blooming is 
shown in Tables I–IV where the resulting values of the 
focusing criterion J and the rms error ε(rf) obtained for the 

radius of the weighting function rf = r0 (r0 is the initial 

radius of the beam) are tabulated. 
 
TABLE I. Resulting values of the focusing criterion J. 
Parameters used: R

ν
 = –20, zNL = 0.5, zL = 0. Initial value 

J0 = 0.19 and for an ideal corrector Jideal = 0.41. 
 

Servodrives 
configuration à b c d e f 

J 0.38 0.39 0.40 0.41 0.41 0.40 
ε(rf = r0) 0.10 0.05 0.09 0.09 0.09 0.09 

 
TABLE II. Resulting values of the focusing criterion J. 
Parameters used: R

ν
 = –30, zNL = 0.5, zL = 0. Initial value 

J0 = 0.11 and for an ideal corrector Jideal = 0.29. 
 

Servodrives 
configuration à b c d e f 

J 0.24 0.26 0.25 0.24 0.26 0.26 
ε(rf = r0) 0.80 0.75 0.40 0.44 0.44 0.40 

 
As is seen from Table I, compensation for the effect of 

a distributed thermal lens of a moderate lens power can be 
done with all mirrors and equally efficiently. The resulting 
values of the criterion J are close to the values Jideal 

obtained with an ideal corrector, the errors ε being small. 
With the increase of nonlinearity (Table II, R

ν
 = –30) 

ε for the models (a) and (b) becomes much larger than that 
for the remaining ones but the efficiency remains 
approximately equal for all the correctors. Precision of the 
approximation for this case is illustrated by Fig. 3 where a 
section of the phase profile by the XOZ plane and 
corresponding bending of the mirror (configurations b and 
c) are presented. The error is seen to decrease when the 
model (b) is replaced by the model (c) (Fig. 1) but the 
surface to be reconstructed is sufficiently smooth and 
apparently just this fact explains the situation when the 
presence of errors does not result in the reduction of the 
field concentration. 

Much more complicated configurations of phase surfaces 
are observed for the parameters zNL = 0.1 zd, zNL = 0.4 zd, 

and R
ν
 = – 90 (Fig. 4). Under these conditions the mirrors 

(a) and (b) do not reconstruct characteristic features of the 
phase and hence the resulting values of J decrease (Table III). 
The remaining models provide for approximately the same 
concentration of the field in the recording plane. 

Increase of the thin thermal lens power (Table IV, 
R

ν
 = –110) leads to further increase of ε for the configurations 

(a) and (b) (Fig. 1). As a consequence, the resulting values of 
J decrease that is most noticeable for the mirror (a) which 
does not provide the growth of the focusing criterion during 
the beam control. 

 

Thus it should be pointed out in conclusion that the 
efficiency of correction for thermal nonlinearity with an 
adaptive mirror is determined, first of all, by the density of 
disposition of servodrives in the region occupied with a 
beam. This conclusion is supported not only by the increase 
of J when going from the model b to the model c (Fig. 1) 
but also by the fact that the resulting values of the criterion 
for the mirror (f), where the number of drives at the 
periphery has been substantially increased as compared to 
that for the remaining models, do not increase. 

 
TABLE III. Resulting values of the focusing criterion J. 
Parameters used: Rv = –90, zNL = 0.1, and zL = 0.4. 

Initial value J0 = 0.07 and for an ideal corrector 

Jideal = 0.42. 
 

Servodrives 
configuration à b c d e f 

J 0.24 0.25 0.33 0.33 0.34 0.33 
ε(rf = r0) 0.52 0.48 0.18 0.17 0.18 0.17 

 

 
 

 
 
FIG. 3. Bending of the mirror reconstructing the correcting 
phase surface (section by the ZOX plane). Curve 1 
represents the profile of the phase surface, while curve 2 
shows the profile of the mirror. (a) is for servodrive 
configuration b from Fig. 1 and (b) for the configuration c 

from Fig. 1. Parameters used: zNL = 0.5, zL = 0, and R
ν
 = –30. 
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FIG. 4. Bending of the mirror reconstructing the phase surface (section by the ZOX plane). Curve 1 represents the profile 
of the phase surface and curve 2 represents the mirror profile. (a) is for servodrive configuration b from Fig. 1 and (b) for 
the configuration c from Fig. 1. Parameters used: zNL = 0.1, zL = 0.4, and Rv = –90. 

 
TABLE IV. Resulting values of the focusing criterion J. 
Parameters used: R

ν
 = –110, zNL = 0.1, and zL = 0.4. Initial 

value J0 = 0.05 and for an ideal corrector Jideal = 0.42. 
 

Servodrives 
configuration à b c d e f 

J 0.04 0.21 0.38 0.34 0.34 0.34 
ε(rf = r0) 1.95 0.72 0.31 0.48 0.47 0.31 

 

It seems likely that the efficiency cannot be increased by 
changing only the geometry of drives disposition without 
changing their density in the central portion (comparison of 
the models c and d, Fig. 1). 

The above conclusions concern, first of all, the cases of 
propagation of beams of high intensity (⏐R

ν
⏐ ≥ 90). When 

beams of a moderate power (⏐R
ν
⏐ = 20, 30) propagate 

through the medium the surface of the correcting phase is 
relatively smooth. Therefore all the aforementioned models 
including the simplest ones (a) and (b), give nearly equal 
results on correction for thermal blooming (Tables I and II). 
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