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An adaptive postdetector processing of signals is considered in this paper. Tfiis 
approach allows one to detect a weak signal by increasing the time of accumulation 
and to reduce the dynamic error in the presence of a strong signal when the time of 
accumulation is being decreased. It is shown that the process at the output of the lidar 
system photodetector is a Gaussian–Markovian one, for which the mean integral 
estimate of the mathematical expectation converges to the optimal one. TIte optimal 
observation time is found where the sum of the fluctuation and dynamic errors appears 
to be minimum. For the given maximum relative error of the signal recovering the 
threshold energy is determined that could provide for this error.  

 
INTRODUCTION 

 
In spaceborne lidar systems for a global ecological 

control there is a problem on extraction of a weak signal 
from noise. The simplest postdetector processing of signals 
used in optical detectors does not meet current requirement 
for precision and in some cases it is impossible to detect the 
signal at all. 

An increase of the mean laser power due to an increase 
of pulse repetition frequency results in undesirable growth 
of weight, overall dimensions, and power consumption as 
well as cost of the lidar system. Moreover the laser service 
life and reliability become lower. 

The most promising way of extracting a signal from 
noise is the use of Kalman-Byusi nonstationary optimal 
filter or adaptive systems of signal processing. 

The adaptive postdetector processing of a lidar signal 
(APPLS), in contrast to the Kalman digital filter, does not 
employ an analog-to-digital converter (ADC) and hence can 
acquire input signals of a wider dynamic range. The latter is 
much promising for use of adaptive postdetector processing 
of signals in ground-based lidars. The APPLS enables one to 
detect a weak signal by automatically increasing in the time 
of accumulation and to reduce the dynamic error in the case 
of a strong signal when the time of accumulation decreases. 

 
STATISTICS OF AN OUTPUT SIGNAL 

 

In a photodetector there occurs conversion of the 
detected field into a signal current (or voltage) which then 
undergoes postdetector processing. Choice of an optimal signal 
processing depends on statistics of a signal at the 
photodetector output. Since the conversion of an optical field 
into an electron flux and the electron multiplication (for a 
PMT or an avalanche diode) are intrinsically random, the 
photodetector output current is also random. The output 
voltage of a PMT may be regarded as a filtered Poisson 

process
1

 
 

U(t) = ∑
j=1

N(0, t)

 R
L G q h (t – tj),  (1) 

 

where G is the PMT gain, R
L
 is the PMT load resistance, q 

is the electron charge, N(0, t) is the simple Poisson process, 
h(t) is the photodetector current response to a single 
electron, and t

j
 is the moment of the jth electron release. 

The   response  function  h(t)   satisfies   the   

normalization condition 
⌡⌠
–∞

∞

h(t)dt = 1. Duration of the h(t) 

response function of a PMT is set by a transit time τ
h
, 

which is inversely proportional to a photodetector 
transmission band. When the photodetector transmission 
band is unlimited (τ

h
 → 0) the h(t) function can be treated 

as the Dirac δ–function. 
The random process (1) may be interpreted 

mathematically assuming that a δ–pulse train acts on an 
input of an inertia) section having a pulse characteristic 
h(t) 
 

ξ(t) = R
L G q ∑

j=1

N(0, t)

 δ(t – tj). 

 
Then a random process at the output of the inertial 

section is written as the convolution integral 
 

U(t) = ⌡⌠
0

t

 h(t – τ) ξ(τ) dτ , (2) 

 
what corresponds to expression (1). 

The process ξ(τ)is stationary in a wide sense and has 
the following statistical characteristics: 

the mathematical expectation 
 
m

ξ
(t) = RL G q n0 = m

ξ
 , 

 
where n

0
 is the mean photoelectron count rate and F is the 

PMT's noise coefficient;  
 

the covariance function 
 
K

ξ
(τ) = m2

ξ
 + C1 δ(τ) , (3) 

 
where C1 = (RL G q)2 n0F.  

 
As is seen from expression (3) the Poisson process is a 

purely "white" process (a process with an unlimited 
frequency band and infinite variance). 
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Let an integrating RC–chain with the parameter 
a

1
 = 1/RC be an inertial section then the output process 

U(t) is described with a fluctuation linear differential 

equation of the first order.
2

 From its solution it is possible to 
find the mathematical expectation of the output process 
 

mU(t) = m
ξ {1 – exp (– α1 t)} , 

 

and the variance 
 

DU(t) = (C1 α1 / 2) {1 – exp (– α1 t)} . 
 

These statistical characteristics are time dependent, 
therefore the output process in the general case is 
nonstationary despite the stationarity of the input process, 
but for t

1
 = 1.5/α1 the variance DU(t) is 0.475 α1 C1 and 

for t2 = 3/α1 the mathematical expectation mU(t) = 0.995 ms 

is independent of time. 
Hence, in a time t = 3/α1 the variance DU and the 

mathematical expectation mU of the output process can be 

considered independent of time t and the output process is 
stationary in a wide sense. 

In a steady mode 
 

mU = m
ξ
 ; DU = C1 α1 / 2 , (4) 

 

and the correlation function 
 

RU(τ) = DU exp (– α1 ⏐τ⏐) . (5) 
 

A Gaussian process with correlation function (5) has a 
Markovian property. 

Consider now the effect of the Markovian–Gaussian 
process with the correlation function R1(τ) = DU exp(–⏐τ⏐/τ

0
) 

on the integrating RC–chain when the time constant T of 
the integrating chain has three different values: T n τ

0 
, T = τ

0  á 

 

and T . τ
0
. 

In this case let us generalize the above result to a signal 
passing through an amplifier or an integrator. Obtaining first 
the energy spectrum of the output process and then using the 
Wiener–Khinchin transform we have a correlation function 
of the output process 
 

R2(τ) = DU 
τ
0

τ20 – T2 ⎣
⎡

⎦
⎤τ

0 exp 
⎩
⎨
⎧

⎭
⎬
⎫–

 ⏐τ⏐
τ
0

 – T exp 
⎩
⎨
⎧

⎭
⎬
⎫–

 ⏐τ⏐
 T 

. (6) 

 

The variance of the output process Dout is found from 

Eq. (6) at τ = 0: 
 

Dout = DU τ0 / (τ0 + T) . (7) 
 

Depending  on  the   proportion   between   τ
0
  and T 

the correlation function R2(τ) has the form  

1) τ0 . T 

R2(τ) = DU exp 
⎩
⎨
⎧

⎭
⎬
⎫–

 ⏐τ⏐
τ0

 ,  Dout = DU ; 

 

2) τ0 = T 

R2(τ) = (DU / 2) exp 
⎩
⎨
⎧

⎭
⎬
⎫–

 ⏐τ⏐
τ0

 ,  Dout = DU / 2 ; 

 

3) τ0 n T 

R2(τ) = (DU τ0 / T) exp 
⎩
⎨
⎧

⎭
⎬
⎫–

 ⏐τ⏐
τ0

 , Dout = DUτ0 /T . 

Irrespective of the proportion between τ
0
 and T the 

output process is Gaussian and Markovian. 
 

ESTIMATION OF THE MATHEMATICAL EXPECTATION 

 
Let the integrated mean value of the weighted process 

on the interval [0, T] be an estimate of the mathematical 
expectation of the input process 

 

m 
∧

T = ⌡⌠
0

T

 h1(t) U(t) dt , 

 

where U(t) is a random and stationary in a wide sense 
process; h

1
(t) is the determinate weighting function which is 

interpreted as a pulse characteristic of the filter. 
The weighting function h

1
(t) must satisfy the 

normalization condition  
 

⌡⌠
0

T

 h1(t) dt = 1. 

 
In a particular case for an ideal integrator h

1
(t) = 1/T 

and the normalization condition holds for any T. 
As shown in Ref. 3, for a stationary random process 

with the correlation function of the type of Eq. (5) an 
optimal linear estimate of the mathematical expectation is 
 

m 
∧

T = 
1

2 + α1T
 
⎣
⎢
⎡

⎦
⎥
⎤

U(0) + U(T) + α1 ⌡⌠
0

T

 U(t) dt  . 

 
The variance of the optimal estimate is determined as 

 

D{m 
∧

T} = 2DU / (2 + α1T) . 

 
The integrated over the interval [0, T] mean value of 

the process 
 

mT = 
1
T ⌡⌠

0

T

 U(t) dt , (8) 

 
can be taken as an estimate of the mathematical 
expectation. Here mT is a random value since it varies from 

realization to realization of the same stationary process 
U(t) of duration T. The variance of the estimate of the type 
of Eq. (8) is 
 

D{m 
∧

T} = [2DU / (α1T)] [α1T – 1 + exp (– α1T)] . 
 

Under condition α1T . 1 the variance of the 

integrated mean estimate is equal to the variance of the 
optimal estimate, i.e., 
 

D{mT} = D{m 
∧

T} = 2DU / (α1T) , α1T . 1 . (9) 

 
Thus, the integrated mean estimate can be used for a 

Gaussian–Markovian process with correlation function (5) 
instead of optimal linear estimate of the mathematical 
expectation, provided that the observation time of the 
random process is much longer than the interval of 
correlation of the input process. 
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MINIMIZATION OF THE VARIANCE OF  

A LIDAR SIGNAL ESTIMATE 

 
An estimate of a time–dependent mathematical 

expectation of a random process based on a single observation 
is hindered with the necessary of determinating optimal time 
of averaging (integrating). Optimal time of integration 
provides for reaching minimum of the mean squared deviation 
(dispersion) of the estimate of the mathematical expectation. 

The dispersion of the estimate D 
∧

{m(tj, T)} is composed of two 

components which are the fluctuation and dynamic errors 
 

D 
∧

{m(tj, T)} = B2{m(tj, T)} + D{m(tj, T)} , (10) 
 

where B{m(tj, T)} is the bias of the estimate at the time tj 

(dynamic error); D 
∧

{m(tj, T)} is the variance of the 

mathematical expectation at the time tj (fluctuation error) 

determined by expression (9). 
By restricting the dynamic error to a term of its series 

expansion with the second derivative of the signal we can 
find the optimal time of integration 
 

Topt = 2.7 
⎣
⎢
⎡

⎦
⎥
⎤P(tj) / 

⎩
⎨
⎧

⎭
⎬
⎫

α ⎣
⎡

⎦
⎤d2Ps(t)

d t2 t=tj

1/5

 , (11) 

 

where P(tj) = Ps(tj) + 
–
Pb; Ps(tj) is the optical power of a 

signal on the photocathode at the time t; Pb is the mean 
optical power of the background on the PMT's 

photocathode; a = η/(hν) is the constant coefficient (J
–1

); 
η is the quantum efficiency of the PMT's photocathode; h is 
the Planck constant; and ν is the optical frequency of laser 
radiation. 

Using the method of finite differences we can reduce 
expression (11) to the form 
 

Tj = 
P(t

j)

4α [ 

∧

P(tj) – P(tj)]
2 , (12) 

 

where the integrated mean estimate of the signal at time tj 

is determined by the expression 
 

P 
∧

s(tj) = Ej / Tj – 
–
Pb , (13) 

 

where E is the energy accumulated in the integrator during 
the observation time Tj. 

Minimum dispersion of the estimate of a signal 
m2[Topt]

 an optimal interval Topt, can be found from 

expression (10) by transforming the first term 
 

m2[Topt] = 
D

U τ0
2 Topt

 + 
2 DU τ0

Topt
 = 2.5 

D
U τ0

Topt
 (14) 

 

or by representing it in terms of the optical power 
 

m2[Topt] = 1.25 F κ2
1 Ps(tj) [1 + 1/q1] / (α Topt) , (14a) 

 

where q
1
 is the input signal–to–noise ratio 

 

q1 = Ps(tj) / 
–
Pb . (15) 

 

By dividing expression (14a) by U
s

2

 (tj) and taking the 

square root of the obtained expression we find the total 
relative error δ

Σ
 in the estimate of the signal 

 

δ
Σ
 = {1.25 F [1 + 1/q1] / [α Topt Ps(tj)]}

1/2

 . (16) 

 
The total relative error contains two components, i.e., 

the dynamic and the fluctuation ones 
 

δ
Σ
 = {δ2

TD
 + δ2

TF
}1/2

 , 

 
where δ

TD
 and δ

TF
 are the dynamic and fluctuation 

components of the total relative error, respectively. 
These components of the error can be found from 

expression (14) in which the first term determines the 
dynamic error and the second term determines the 
fluctuation one: 
 

δ
TD

 = {0.25 F [1 + 1/q1] / [α Topt Ps(tj)]}
1/2

 . (17) 

 

δ
TF

 = {F [1 + 1/q1] / [α Topt Ps(tj)]}
1/2

 . (17a) 

 
It is seen from expressions (17) and (17a) that for an 

optimal time of observation there is a unique proportion 
between δ

TD
 and δ

TF
, i.e., 

 
δ

TF
 / δ

TD
 = 2. 

 
By introducing the relative error δ

0
 of recovering the 

signal and noise mixture we can reduce expression (12) to 
the form 
 

Ethr = 
0.56 F (⏐δ0⏐ + 2.24)

α δ2
0

 , (18) 

 
where Ethr is the threshold energy equal to the energy of the 
signal and noise mixture in the interval [t – T

j/2, 

tj + Tj/2] 

 

Ethr = T
j
 P 

∧

(t
j
) , (19) 

 

P 
∧

(tj) is the estimate of the total optical power of a signal 

and an external background on the photocathode. 
The dynamic component of the relative error δ

0TD
 of 

recovering the signal and background mixture is 
 

δ
0TD

 = P 
∧

(tj) / P(tj) – 1 = δ0 / 2.24 . (20) 

 
Depicted in Fig. 1 is the absolute value of the relative 

error | δ0 | of recovering the signal and external background 

mixture as a function of the accumulated energy Ethr, 

normalized to the coefficient of the PMT’s noise F at the 
radiation wavelength λ = 0.532 μm. 

If the energy of the received signal and noise mixture 
is constant in each observation, the error of the estimate is  
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also constant. Thus, if a device of a postdetector processing 
keeps the accumulated energy constant, then the tuning of 
observation lime is done automatically in accordance with 
the input signal power variations in time. 
 

 
 

FIG. 1. The absolute value of the relative error δ0 of 

recovering the sum of optical power of a signal and 
background P(t) as a function of the relation between the 
threshold energy Ethr and the PMT's noise coefficient F. 
 

Let us now find the dependence of Ethr on the relative 
error of recovering the signal δ

Σ
 for different values of the 

external background. Transform expression (16) by squaring 
both   its   sides   and   multiplying   the   numerator   and    

the denominator of the resulting expression by [
–
Ps(tj) + 

–
Pb]. 

Taking into account expressions (19) and (20) and 
substituting δ

TD
 = δ

Σ
 / 2.24 we finally obtain 

 

Ethr = 
1.25 F (q1 + 1) [q1 (1 + ⏐δ

Σ
⏐ / 2.24) + 1]

α q2
1 δ

2

Σ

 . (21) 

 

Figure 2 presents the absolute value of the relative 
error | δ

Σ | of signal recovering as a function of the threshold 

energy Ethr at λ = 0.532 μm for four values of the input 
signal–to–noise ratio q

1
 (curves 1, 2, 3, and 4 at q

1
 = 1, 2, 

5, and 10, respectively). (A functional block-diagram of a 
device which performs the described algorithm of processing 
is depicted in Fig. 3). 

 

 
 

FIG. 2. The absolute value of the relative error δ
Σ
 of 

recovering the optical power of a signal (Ps) as a function of 
the relation between the threshold energy Ethr and the 
PMT's noise coefficient F: I) q

1
 = 1, 2) q

1
 = 3, 3) q

1
 = 5, 

and 4) q
1
 = 10. 

 
 
FIG. 3.   A functional block–diagram of the processing of 
a signal. 
 

To reduce the error of recovering the signal caused 
by a count increment of the counter it is possible to use a 
variable threshold. In this case the inequality is satisfied 
 

Ethr / [Ps(tj) + 1/q1] . ΔT , 

 
where ΔT is the count increment of the counter. 

Thus the variable threshold provides for a minimum 
error in recovering the signal in its wide input dynamic 
range. 
 

THE EFFICIENCY PARAMETER 

 
To estimate the efficiency of the method of adaptive 

processing of a signal we introduce the efficiency parameter 
(V

s
) which interrelates three basic parameters, i.e., range 

resolution (rj), signal power P
s
(tj), and the relative variance 

of the estimate of a signal (δ2
Σ
) 

 
Vs = rj δ

2
Σ
 Ps(tj) . (22) 

 
As is seen from Eq. (22), the smaller the efficiency 

parameter Vs, the more efficient is the method of 

processing. Moreover, it is impossible to improve one of 
the variables without worsening the remaining ones since 
the efficiency parameter is a constant value. Let us 
determine the efficiency parameter for the adaptive 
method of signal processing. Using the expression for 
optimal interval of observations we can find the spatial 
resolution 
 

rj = 
C F (q1 + 1)

1.6 α δ2
Σ
 q1 Ps(tj)

 ,  

 
and then the efficiency parameter 
 

Vs = rj δ
2
Σ
 Ps(tj) = 

C F (q1 + 1)

1.6 α q1
 . (23) 

 

By     substituting      the     values      Ñ = 3 × 10
8

 m      

and α = 2.67 ⋅ 10
17

 J
–1

 at λ = 0.53 μm into Eq. (23) we 
obtain 
 

Vs = 
0.7 F (q1 + 1)

q1
 , (23a) 

 
where the dimensionality of Vs is [m ⋅ NW]. 

The   relative  variance   for  the   Kramer–Rao   
boundary (KRB) is 
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δ
2

KRB
 = 

D
KRB

P2
s(tj)

 = 
(q1 + 1)

α Ps(tj) rj q1
 = 

C (q1 + 1)

2α Ps(tj) rj q1
 

 

In accordance with Eq. (22) we find the uncertainty 
function for KRB 

 

V
KRB

 = rj δ
2

KRB
 Ps(tj) = 

C (q1 + 1)

2 α q1
 . (24) 

 

The PMT noise coefficient (F) does not enter into 
expression (24) since it has been obtained for Poisson statistics 
of photoelectrons and for an ideal PMT with F = 1. Therefore 
to compare different methods of processing with the potential 
one the PMT noise coefficient should be taken 1. 

For different methods to be compared we introduce the 
efficiency coefficient K

eff
. 

 

Keff = 
V

KRB

Vs
 . (25) 

 

It characterizes the difference between the method under 
study and the potential one K

eff
 ≤ 1. For an adaptive 

processing of a signal K
eff
 is found from Eqs. (23a) and (24). 

Its value is 0.8. 
 

SIMULATION OF THE POSTDETECTOR 

PROCESSING OF A SIGNAL 

 

 
 
FIG. 4. A reference model of a signal; Ps – the optimal 

power of the signal, NW and R – the distance between a 
15–km atmospheric layer and the Earth's surface, km. 
 

To make numerical simulations we used a typical 
model of a lidar return signal assuming the lidar to be  

onboard a satellite and intended for acquiring profiles of 
atmospheric aerosol. A 15–km atmospheric layer was 
investigated, the meteorological visual range of the 
atmosphere SM was taken to be 2 km. 

Figure 4 depicts a signal used in simulation and Fig. 5 
presents a relative error in recovering this signal with 
minimum input signal–to–noise ratio q

1
 = 1. 

 

 
 
FIG. 5. A relative error δ

Σ
 of recovering the initial signal; 

q
1min

 = 1, R is the distance between a 15–km atmospheric 

layer and the Earth's surface, km and Ethr = 15.6 ⋅ 10
–16

 J. 
 

CONCLUSIONS 

 
1. An adaptive postdetector processing of a signal 

enables recovering of weak signals at the expense of 
increasing time of observation and worsening the spatial 
resolution, while a strong signal is recovered from noise 
at a shorter time and with higher spatial resolution. In 
both cases the estimate of a signal is the best one in the 
sense of the criterion of minimum standard deviation of 
the signal. 

2. The described method of processing a signal makes 
it possible to detect a signal in a wide dynamic range 
what is its important advantage against a device for 
processing a signal with an analog–to–digital converter. 
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