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The problem on reconstruction of the geometric parameters of a charged particle 
track in the sea water as well as particle charge, mass, and energy from the Čerenkov 
optical radiation is considered. Algorithms for primary signal filtration by modular 
units of a detector array are proposed.  

 

The Project DUMAND (on deep–water detection of 
muons and neutrinos) proposed in the middle 70s, 
together with the Program ATENA (of the experiment 
with the atmospheric neutrinos of high energy) and the 
Program UNICORN (on underwater detection of 
interstellar cosmic neutrinos)1 is as before the only 
accessible method to penetrate far beyond the 
teraelectronvolt horizon of physics of elementary 
particles, because mankind will apparently be forced to 
accept monopoly of the universe on the production of 
particles with 107–108 TeV energy. The short fluorishing 
state of experimental physics of elementary particles is 
near the completion, and it will be compelled, in near 
future, to turn from experimental science into an 
observational one like astronomy. So after a short spell of 
oblivion, a renaissance of the Project DUMAND and a 
renewal of interest in problems of detection of high–
energy particles, nuclear–electromagnetic cascades, etc. 
are inevitable as a result of the tremendours progress of 
experimental physics of elementary particles in the early 
80s. Because the optical methods of recording have higher 
level of information content as compared with the 
acoustic ones (in spite of the latter have relatively low 
cost), one can assert with a high degree of probability 
that the project will be realized in an optical variant. 
Hence the need arises of more detailed experimental and 
theoretical study of the propagation and absorption of 
electromagnetic waves of the optical range in the see 
water as well as the study of the Čerenkov radiation 
process, the detection and filtration of the optical signal 
against the bioluminescence background, etc. In this 
paper the problem is briefly considered on the 
reconstruction of the geometric parameters of a charged 
particle track as well as particle charge, mass, and energy 
from the recorded Čerenkov radiation, the algorithms for 
the primary signal filtration by modular units of the 
detector array, and feasibility of recording the exotic 
processes as part of the Program DEGRE (on detection of 
the (super)gravitation effects2).  

 
1. THE ČERENKOV RADIATION AS A SOURCE OF 

INFORMATION ABOUT THE PARAMETERS OF A 

CHARGED PARTICLE TRACK 
 

Here we consider the case of motion of a single 
charged particle in water. The Čerenkov radiation process 
has been well studied theoretically both on the classical and 
quantum levels, which allows us to construct the convenient 
analytical algorithms for reconstruction of the track 
geometric parameters, the physical characteristics, and the  

parameters of the medium. In the most general form the 
problem on the reconstruction of the parameters can be 
defined more accurately using the following diagram:  
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Here D(Rk) is the parametric space of the model, k is the 
dimensionality of this model space, J(R4) is the track 
space or the space of the physical realization of the 
model, E3×E3 is the 6–D space of straight lines in the 

Euclidean space R3, Y(R
MN

) is the space of the geometric 
realization of the model, M is the number of units in a 
setup, 2N is the number of photomultipliers in one 

modular unit (N ≥ 6), U(R
MN

) is the space of amplitudes, 

U*(R
3M

) is the reduced amplitude space, H(R
κ

) is the  

κ—dimentional manifold of a noiseless signal, L(
3M–κ

) is 
the space of the separable noise, p is the mapping of the 
parameter space into the space of the physical realization, 
c is the canonical projection, g is the mapping from the 
space of physical realization of the model into the space 
of geometric realization which reduces to the selection of 
the geometry of the setup and the geometry of 
arrangement of photomultipliers in the unit of modules, a 
is the mapping of the instrumental realization connected 
in particular with sensitivity of the photomultiplier, G

1
 is 

the primary (intramodular) geometric filtration of the 
signal, G

2
 is the secondary (intermodular) filtration, and 

r is the isomorphic mapping of H(Rκ) into D(Rκ).  
The minimum dimensionality of the parameter space 

dimD
min

(Rκ) = 4, considering that it corresponds to the 

number of the track geometric characteristics. They can be 
identified with the three Euler angles and one parameter of 
length which is determined by the distance covered by the 
light from the particle trajectory to the origin of the 
coordinate system which we can affix to the geometric 
center of the setup. The maximum dimensionality 

dimD
max

(Rκ) = 9, considering that we can determine, in 

addition to the geometric parameters, some physical ones 
and the reference parameters of the medium. Thus in the 
most general case the detection of the charged particle 
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corresponds to the point of the 9–D space of the parameters 
(α, β, γ, L, q, m, ε, μ, n), where α, β, and γ are the Euler 
angles; L is the track length; q is the charge, m is the mass, 
and ε is the energy of the particle; and, μ and n are the 
optical coefficients of absorption and refraction, 

respectively. In principle it is possible to construct ∑
i=0

5

 c
5

i 

models in which, in addition to the geometric parameters, 
the arbitrary combinations of the rest of five parameters are 
used. For the models with the number of the parameters 
κ ≤ 6 at least two modular units must come into operation, 
while their number is three for 6 < κ ≤ 9.  

The space of linear trajectories in R3 in the parametric 
form is given as  
 
r = a + bt , 
 
i.e., a straight line in R3 is represented by a point in E3×E3. 

The canonical projection c: E3×E3
 → C2×S2 = T 

3×R1, 
where S2 is a two–dimensional sphere of unit radius, C2 is a 
two–dimensional cone, T 

3 is a three–dimensional tore, is 
defined in the form  
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where L and n are the canonical coordinates of the 

trajectory, I is a unit vector in the direction L, and c
∧

 is a 

Čerenkov angle (c
∧

 g 41°). Here (l, n) = – cos c
∧

, i.e., L is 
directed from the origin of coordinates to the point of the 
trajectory from which the Čerenkov radiation comes. The 
kernel of the canonical projection is the 2–D manifold 
invariant under translation group in the direction n  
 

{a = a + λb ,
b′ = σb .  

 

The mapping p(D(Rκ) → J(R4)) can be defined more 
accurately by choosing a couple of vectors I

0
 and n

0
 in the 

form, for example,  
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, 

 
and by using the representation of SO(3) group as a group 
of the orthogonal transformations R3 
 
P: (α, β, γ, L) → J(R4) ,  
 
L = L(A

3
(α) A

2
(β) A

3
(γ) I

0
) ,  

 
n = A

3
(α) A

2
(β) A

3
(γ) n

0
 ,  

 
where  
 

A
3
(α) = 

⎝
⎜
⎛

⎠
⎟
⎞cosα  –sinα  0

sinα   cosα  0
0 0  1

 ,  A
2
(β) = 

⎝
⎜
⎛

⎠
⎟
⎞ cosβ  0  sinβ

 0  1  0
–sinβ  0  cosβ

 . 

Let M
ν
 be a radius–vector of the νth module of the 

setup. The mapping g: J(R 
4) → Y(R 

μ ν

) is a product of 
two transformations: the translation T

μ ν
 of the vector L at 

the vector M
ν
  

 

L
ν
′ = T

μ ν
 = L – M

ν
 

 

and subsequent canonical projection  
 

g(L) = c ° T
μ ν

(L) = c ° (L – M
ν
) . 

 

As a result of these operations, we derive for every M
ν
 the 

vector L
ν
 pointing to the point of the trajectory from which 

the signal came to the point M
ν
. Let us define the 

commutator  
 

[c, T
μ ν

]L = R = ±Rn , 
 

where R is a vector joining two points of the trajectory; 
moreover, the light from one point arrives at the origin of 
the coordinates and from the other enters the point M

ν
. 

Then we construct the object G
σν

 as a scalar product of N
σ
 

by L
ν
 

 

G
σν

 = (N
σ
 L

ν
) . 

 

Here (σ = 1, 2, ..., N, ν = 1, 2, ..., M), where N
σ
 is a unit 

vector specifying the direction in R3. It is realized in the 
physical space by two photomultipliers directed oppositely. 
The magnitude of the vector projection on this direction 
equals the difference between the signals of two 
photomultipliers and the totality of all N

σ
 forms the 

geometry of modular unit of the setup. Thus we can say 
that Y(μ) is the intermodular geometry of the setup while 
Y(ν) is its intramodular geometry.  

And finally we consider the mapping 

a: Y(R
μ ν

) → U(R
μ ν

) that we determine by the formula  
 

A
σν

 = 
q2
κ

⎜⎜L
ν
⎜⎜2

 G
σν

 exp(–μ(λ) L
ν
) , 

 

where A
σν

 is an average amplitude in photoelectrons, q is a 

dimensionless charge of a particle in units multiple to the 
electron charge, k is a constant of a photomultiplier 
(according to the data of the scientists of the Baikal group, 
it makes 8.57±0.43 meters per one photoelectron), μ(λ) is a 
sea water absorption coefficient, G – filtration consists in 
division of the amplitude space U into the submanifold of 
the filtered—out signal and that of the removable noise. 
The intramodular filtration is the simplest operation as in 
this case the submanifold of the filtered—out signal is a 
linear 3–D subspace. To solve the problem, one needs only 
one transformation. We consider this procedure in detail in 
Sec. 2. The intermodular filtration G

2
 essentially depends 

on the overall geometry of the setup. For this reason, no 
consideration has been given here. We only limit ourselves 
to the example of reconstruction of the track geometric 
parameters with simultaneous detection of the Čerenkov 
radiation by two units of the setup.  

Let M
1
 and M

2
 be the radius–vectors of two units of 

the setup, and A
1
 and A

2
 be the filtered signals. From the 

equality  
 

L = c ° (L1 
+ M

1
) = c ° (L2 

– M
2
) , (1) 

 

by multiplying it by n, we derive  
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1
)2 – (L

1
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1
, n)2
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2
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2
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By multiplying Eq. (1) by I

1
 and I

2
 and making addition 

and subtraction of the obtained equations as well as by 
using Eq. (2), we find the solution of the system of 
equations (3)  
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To solve the problem completely, one needs to find the 

direction of movement of a particle specified by the vector 

n. It can be done by using the ratio (l, n) = – cos c
∧

.  
Then  

n = – 
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∧
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from which we find the expressions for L

1
 and L

2
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Because the distance L is inversely proportional to 

the signal amplitude, the sign in Eqs. (4) and (5) is taken 
depending on the ratio of the amplitudes A

1
 and A

2
.  

 
2. PLATONIC SOLIDS AND FILTRATION OF THE 

OPTICAL SIGNAL 
 
Now we consider the G–filtration when the 

photomultipliers of the modules form the regular 
polyhedrons (they are arranged quasispherically in the 
space). We limit ourselves to Platonic solids such as 
tetrahedron, cube, octahedron, dodecahedron, icosahedron, 
and two solids of mixed octahedron–cube symmetry.  

The arbitrary vector x in E3, can be represented on 
the orthogonal Descartes' basis ei: x = x 

iei (i = 1, 2, 3). 

Let us introduce N unit vectors N
σ
 (σ > 3) into E3 and 

take the scalar product (x, N
σ
) = A

σ,
 where A

σ
 ∈ U 

μ ν
 

and μ is fixed. Thus the vector N
r
 can be represented on 

the initial basis N
σ
 = N

σ
 
iei. In this case the scalar 

product (x, N
σ
) can be rewritten in the form  

 

(x, N
σ
) = x 

i
 N

σ

j
(ei ej) = x 

i
 N

σ
 
i
δij = x 

i N
σi = A

σ
 , (6) 

 
where δij is Kronecker's delta symbol.  

The problem of x reconstruction from the values of A
r
 

can be solved by two methods.  

1. Choose C3

N of triplets of vectors in E3 in the form of 

a basis set, and find for every independent triplet 

N
τ
 (τ = 1, 2, 3) the corresponding inverse matrix N 

τ

j  such 

that N
τiN 

τ

j  = δij. Then the components of the vector x 
i in 

Descartes' basis are found by multiplication of Eq. (6) by 

N 
τ

j :  

 

x 
i
 N

τj
 N 

τ

j  = x 
i
 δij = A

s

 N 
τ

j  = x 
j . 

 

As a result, Descartes' coordinates x 
i can be expressed 

in terms of the amplitudes of the signal by the following 
formula 

 

x 
i = 

1

CN
3  ∑ A

τ

 N 
τi
 , 

 

where, in addition to the summation over all dummy 
indices, the sum is taken over all linear–independent 
triplets of vectors. The method is obviously cumbersome due 
to the fact that one needs to calculate C3

N inverse matrices. 

For dodecahedron (N = 5) C3

5
 = 10, while for icosahedron 

C 3

10
 = 120.  

2. It is convenient to consider the matrix N 
i
τ
 as the 

triplet of vectors in the N–space of U 
N rather than a set of 

N unit vectors in E3. The idea has been conceived to 
complete this triplet to the total orthogonal basis of N 
vectors in U 

N and by orthogonal rotation and 

normalization to obtain such a coordinate system in U 
N in 

which the first three coordinates correspond to the 

components x 
i and the rest form the subspace of the 

separable noise. In this case the problem reduces merely to 
the Gram–Schmidt orthogonalization. In the matrix 
representation this procedure can be performed in the 

following way. The mapping x 
i → A

τ
 is written in the form  

A
1

A
1

.

.

.

.
AN

 = 

N
11

N
12

N
13

N
21

N
22

N
23

. . .

. . .

. . .

. . .
NN1

NN2
NN3

  
⎝
⎜
⎛

⎠
⎟
⎞x1

x2

x3

 . 

 
We must find the matrix of the orthogonal 

transformation M
τρ
 such that  

M
11

M
12

 . . . M
1N

. .  . . . .

. .  . . . .

. .  . . .

. .  . . . .
MN1

MN2
 . . . MNN

 

N
11

N
12

N
13

. . .

. . .

. . .

. . .
NN1

NN2
NN3

=

1 0 0
0 1 0
0 0 1
   
0 0 0
0 0 0

 . 

 
The first three rows of the matrix M

τρ
 are merely the 

columns N
11

 ... NN1
; ... N

12
 ... NN2

; N
13

 ... NN3
 divided by 

the square of their absolute value. The rest of the vectors of 
the same length are found by the standard Gram–Schmidt 
procedure.  

Let us consider some examples.  
(a) T e t r a h e d r o n . To reconstruct unambiguously 

the amplitude and direction of propagation of the signal  
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from all R3, the number of the tetrahedron faces 2 N = 4 is 
insufficient.  

(b) C u b e . Cube has 2 N = 6 faces. Choosing the 
vectors in the directions of Descartes' basis ei, we derive  

N = 
1 0 0
0 1 0
0 0 1

 ,  i.å.,  

x1 = A
1

x2 = A
2

x3 = A
3

 . 

 
(c) O c t a h e d r o n . Octahedron has 2 N = 8, i.e., 

abundance of the basis makes up 4 – 3 = 1. Take the basis 
in the form  

N = 

2
3 0  

1

3

0
2
3  

1

3

– 
2
3 0  

1

3

0 – 
2
3  

1

3

 .  

 
The solution of the problem on reconstruction of the 

components xi from the abundant data is written down in 

the form  
 

x
1
 = 

3

2 2
 (A

1
 – A

3
) , 

 

x
2
 = 

3

2 2
 (A

2
 – A

4
) , 

 

x
3
 = 

3
4  (A

1
 + A

2 
+ A

3 
+ A

4
) ,  

 

d
1
 = 

3
4  (A

1
 – A

2 
+ A

3 
– A

4
) . 

 
Here d

1
 is the component of the separable noise.  

Rotating octahedron at π/4 about the axis z, we derive 
a more symmetric matrix  

N = 
1

3
 

 1  1 1
–1  1 1
–1 –1 1
 1 –1 1

 

 
and more symmetric solution  
 

x
1
 = 

3
4  (A

1
 – A

2 
– A

3 
+ A

4
) , 

 

x
2
 = 

3
4  (A

1
 + A

2 
– A

3 
– A

4
) , 

 

x
3
 = 

3
4  (A

1
 + A

2 
+ A

3 
+ A

4
) , 

 

d
1
 = 

3
4  (A

1
 – A

2 
+ A

3 
– A

4
) . 

 

(d) D o d e c a h e d r o n . It has 2N = 12 faces, i.e. the 
dimensionality of the space of the separable noise equals 3. 
Choose the basis in E3 in the following way: 

N = 

0 0 1

2/ 5 0 1/ 5

( 5 – 1)/2 5 ( 5 + 1)/2 5 1/ 5

–( 5 + 1)/2 5 – ( 5 – 1)/2 5 1/ 5

–( 5 + 1)/2 5 – ( 5 – 1)/2 5 1/ 5

( 5 – 1)/2 5 – ( 5 + 1)/2 5 1/ 5

 .  

 

In this case the solution is written down in the 
following way: 
 

x
1
 = 

1

5
 A

2
 + 

5 – 1

4 5
 (A

3
 + A

6
) – 

5 + 1

4 5
 (A

4
 + A

5
) , 

 

x
2
 = 

1
2 

1
2 + 

1

2 5
  (A

3
 – A

6
) + 

1
2 

1
2 – 

1

2 5
  (A

4
 – A

5
) , 

 

x
3
 = 

1
2 A1

 + 

1

2 5
 (A

2
 + A

3
 + A

4
 + A

5
 + A

6
) , 

 

d
1
 = – 

1
2 

1
2 – 

1

2 5
  (A

1
 + A

2
) + 

1
2 

1
2 + 

1

2 5
  (A

3
 + A

6
) , 

 

d
2
 = – 

1
2 

1
2 + 

1

2 5
  (A

1
 + A

2
) + 

1
2 

1
2 – 

1

2 5
  (A

4
 + A

5
) , 

 

d
3
 = 

1
2 

1
2 – 

1

2 5
  (A

3
 – A

6
) – 

1
2 

1
2 + 

1

2 5
  (A

4
 – A

5
) . 

 

(e) T h e  o c t a h e d r o n – c u b i c  ( O C )  
s y m m e t r y . The number of faces for polyhedron of the 
octahedron–cubic symmetry equals 14, i.e., abundance of 
geometry of the module equals 4. Two modifications of the 
OC symmetry are possible. We define the first one with the 
matrix  

N = 
1

3
 

3 0 0

 0 3 0

 0  0 3
 1  1 1
–1  1 1
–1 –1 1
 1 –1 1

 . 

 

The solution of the problem will be  
 

x
1
 = 

3
7 A1

 + 
3

7  (A
4
 – A

5
 – A

6
 + A

7
) , 

 

x
2
 = 

3
7 A2

 + 
3

7  (A
4
 + A

5
 – A

6
 – A

7
) , 

 

x
3
 = 

3
7 A3

 + 
3

7  (A
4
 + A

5
 + A

6
 + A

7
) , 

 

d
1
 = 

1
2 

3
7 (A

4
 – A

5
 + A

6
 – A

7
) , 

 

d
2
 = 

2 3
7  A

1
 – 

3
14 (A4

 – A
5
 – A

6
 + A

7
) , 
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d
3
 = 

2 3
7  A

2
 – 

3
14 (A4

 + A
5
 – A

6
 – A

7
) , 

 

d
4
 = 

2 3
7  A

3
 – 

3
14 (A4

 + A
5
 + A

6
 + A

7
) . 

 

The second modification can be defined in the following way: 

N = 

1 0 0
0 1 0
0 0 1

2/3 0 1/ 3

0 2/3 1/ 3

– 2/3 0 1/ 3

0 – 2/3 1/ 3

 . 

 

Then the solution is written down in the form  
 

x
1
 = 

3
7 A1

 + 
6

7  (A
4
 – A

6
) , 

 

x
2
 = 

3
7 A2

 + 
6

7  (A
5
 – A

6
) , 

 

x
3
 = 

3
7 A3

 + 
3

7  (A
4
 + A

5
 + A

6
 + A

7
) , 

 

d
1
 = 

1
2 

3
7 (A

4
 – A

5
 + A

6
 – A

7
) , 

 

d
2
 = 

2 3
7  A

1
 – 

3

7 2
 (A

4
 – A

6
) , 

 

d
3
 = 

2 3
7  A

2
 – 

3

7 2
 (A

5
 – A

7
) , 

 

d
4
 = 

2 3
7  A

3
 – 

3
14 (A4

 + A
5
 + A

6
 + A

7
) . 

 

It should be noted that the concrete form of the components 
di makes no physical sence, for the meaning has only  

d = ∑
1

N = 4

 d2

i . 

 

(f) I c o s a h e d r o n . Finally we complete our 
examples with the case of icosahedron symmetry. The 
number of icosahedron faces equals 20, and dimensionality 
of the separable noise equals 2N = 7. The appropriate 
choice of the basis ensures the brevity of the algorithms for 
reconstruction.  

Let us choose the basis in the form  

N = 

0 0 1

2/3 0 5/3

–1/3 1/ 3 5/3

–1/3 –1/ 3 5/3

5/3 1/ 3 1/3

5/3 –1/ 3 1/3

(3 – 5)/6  ( 5 + 1)/2 3 1/3

–(3 + 5)/6  ( 5 – 1)/2 3 1/3

–(3 + 5)/6  –( 5 – 1)/2 3 1/3

(3 – 5)/6  –( 5 + 1)/2 3 1/3

 . 

 

Then the solution of the problem will be  
 

x
1
 = 

1
5 A

2
 – 

1
10 (A3

 + A
4
) + 

1

2 5
 (A

5
 + A

6
) + 

 

+ 
3 – 5

20  (A
7
 + A

10
) – 

3 + 5
20  (A

8
 + A

9
) , 

 

x
2
 = 

3
10 (A

3
 – A

4
 + A

5
 – A

6
) + 

3
20( 5 + 1) (A

7
 – A

10
) + 

 

+ 
3

20( 5 – 1) (A
8
 – A

9
) , 

 

x
3
 = 

1
10 (3A1

 + A
5
 + A

6 
+ A

7
 + A

8
 + A

9
 + A

10
) + 

 

+ 
1

2 5
 (A

2
 + A

3
 + A

4
) , 

 

d
1
 = – 

3

4 5
 ( 5 (A

1
 – A

2
 – A

3
 – A

4
) , 

 

d
2
 = – 

3

4 55
 (A

1
 + 3 5A

2
 – 5 (A

3
 + A

4
 + A

5
 + A

6
)) , 

 

d
3
 = 

3
40 (A

3
 – A

4
 – A

5
 + A

6
) , 

 

d
4
 = – 

5 – 1

4 5
 (A

7
 – A

10
) + 

5 + 1

4 5
 (A

8
 + A

9
) , 

 

d
5
 = 

3

10 2
 (A

3
 – A

4
 + A

5
 – A

6
) + 

5 + 1

10 2
 (A

7
 – A

10
) – 

 

– 
5 – 1

10 2
 (A

8
 – A

9
) , 

 

d
6
 = – 

3

2 385
 A

1
 + 

1
10 

3
11 A2

 – 
3
5 

3
77 (A

3
 + A

4
) + 

 

+ 2
3

385 (A
5
 + A

6
) – 

1
10 

33
7  (A

7
 – A

8
 – A

9
 + A

10
) , 

 

d
7
 = 

1
6 

3
7 A

1
 + 

1
2 

33
35 (A

3
 + A

4
) – 

3

10 35
 (A

5
 + A

6
) – 

 

– 
3

20 7
 (7 + 5) (A

7
 + A

10
) – 

3

20 7
 (7 – 5) (A

8
 + A

9
) . 

 
3. PROGRAM DEGRE  

 
Here we briefly dwell on the prospects of detection of 

gravitons and other exotic particles such as photino, 
gravitino, gluino, etc. Modern theories of quatum 
gravitation do not satisfy us for many reasons. The main of 
them are violation of unitarity with increase of energy and 
the lack of renormalization. The Fermi theory of weak 
interactions had the same drawbacks but nevertheless it 
gave good approximation up to the energies comparable 
with the mass of the W boson. So we hope that more 
fundamental theories having changed our notion of the 
gravitational interaction on the Plank scales nevertheless 
will not change the behavior of the scattering cross section 

for energy ε n10
19

 GeV. 
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In the first order of the perturbation theory for the 
gravity constant the following five processes are possible:  

1) The graviton decay in two photons (gluons) in 

dielectric (barion).
3

 The probabilities of two–photon W
γ
 

and two–gluon Wgl decays equal, respectively  

 

W
γ
 g κ

2
 (n

γ

2

 – 1)
2

 ε
3

 g 5,1⋅10
–38

(n
2

 – 1)
2

 ε
3

 [eV] , 

 

Wgl g κ
2

 ε
3

 g 6,3⋅10
–13

 ε
3

 [GeV] . 

 
2) The graviton resonance on barions. The 

corresponding probability equals  
 

W g (κ
2

/32π) m
3

 .  
 
Here m g ε it is the mass of the barion resonance.  

3) The graviton ionization.
4

 The cross section σ of this 
process equals  
 

σ g 
k

2
 Z

2
 e

10

8π  
m
ε  g 6,2⋅10

–62

 ε–1
 [GeV] ñm

2

 . 

 
4) The graviton–photon inversion on nuclei:  

 

σ g 
k2 Z2 e2

128π  g 1,6⋅10
–63

 ñì
2

 . 

 
5) The graviton production of higgs as well as W and 

Z bosons and X and Y leptonquarks  
 

σ g 
k2 GF 

m2x 

8 2π
 g 4,2⋅10

–66

 ñm
2

 .  

 

The first and second processes have the maximum 
probability of detection. The frequency of the quantum 

graviton processes in the setup with the volume of 1 km
3

 

R g 6.1⋅10
–31

ε
3

 [GeV] F [graviton/km
2

⋅ s].  
The minimum density of the graviton flux for its 

detection must be  
 

F ≥ 5⋅10
24

 ε
–2

 [GeV] . 
 

The theory of supergravitation predicts the existence of 
the new particles being super analogs for the usual ones 
such as photino, gluino, gravitino, etc. According to 
estimates of the scattering cross–section reported in Ref. 5, 
we have  
 

σ g 10
–38

 ε [GeV] ñm
2

 .  
 
Thus the frequency of occuring of the events R in the setup 

is approximately equal to 6⋅10
10

 ε [GeV] F [particles/km
2

⋅s] , 

and the minimum density of the flux is F ≥ 5⋅10 ε
–1

 [GeV] . 
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