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The electromagnetic wave propagation through the medium with delta–
correlated dielectric constant fluctuations is considered in the quasioptical 
approximation. Equations for the mean field and coherence functions are derived 
within the framework of an arbitrary stochastic calculus. It is shown that only the 
Stratonovich calculus is compatible with the conservation law of the radiation power.  

 
Theoretical development on the behavior of the 

systems under the action of random forces is significantly 
simplified if this action can be proved to be a delta–
correlated random process (field). In so doing quite general 
laws have been found which govern the behavior of the 
dynamic systems pertaining to different fields of natural 
sciences, e.g., physics, chemistry, biology, etc. (see, for 
example, Refs. 1–3). However, with multiplicative noise 
the simplification of the solution of the problem due to the 
delta–correlation leads to the ambiguity of going over from 
the stochastic equations describing the behavior of the 
dynamic system to the equations for the statistical moments 
(i.e., to the equations of the Fokker–Planck type for the 
probability density functions). In this case the so–called 
Ito–Stratonovich dilemma takes place (see, for example, 
Refs. 1, 3, and 4).  

On the one hand, since the diffuse random process 
approximation is the zeroth approximation in the noise 
correlation time, it seems to be natural to use the Stratonovich 
calculus in which the delta–correlated processes can be 
manipulated like ordinary functions.2 On the other hand, as 
shown in Ref. 5, in the case of thermodynamic systems the 
kinetic calculus obeying the Onsager principle corresponds 
neither the Ito calculus no the Stratonovich calculus (see also 
Ref. 4). Mathematicians developing the stochastic differential 
equation theory are more impressed by the Ito calculus (see, 
for example, Refs. 1, 3, and 6).  

As is well known, the above ambiguity is associated 
with the extreme irregularity in the white noise behavior 
which for the Wiener process W(ξ) is mathematically 
described by the relations  
 

δW(ξ) ∼ δξ  ,  (δW(ξ))2 ∼ C
α
δξ . 

 

Here the constant C
α
 takes different values depending 

on the type of calculus, in particular, in the case of the 
Stratonovich calculus (α = 1/2) C

α
 = 0. To eliminate the 

ambiguity and to choose the appropriate stochastic calculus 
the formal solution of the dynamic equation has to be 
followed by further (physical) considerations concerning the 
system behavior.  

In this paper we discuss the problem of choosing the 
type of the stochastic calculus in the study of wave 
propagation through the media with delta–correlated 
fluctuations in the complex dielectric constant ε. More than 
20 years ago it was shown that under certain conditions the 

random variations ∼ε could be treated as delta–correlated  

(see, for example, Refs. 7 and 8). However, the 
substantiation of choosing the type of calculus for this 
problem has not been performed and all the calculations 
have been really made default within the framework of the 
Stratonovich calculus. However, it is of interest to approach 
this problem from the two angles. First, the parabolic 
equation in quasioptics approximation (which governs the 
complex field amplitude) containing the random field of 
dielectric constant is the example of the dynamic equation 

including the multiplicative white noise and for Im(∼ε) = 0 
it can be easily observed how the unambiguity of the 

solution is established. Namely, in the case of Im(∼ε) = 0 the 
complex field amplitude, in addition to Eq. (2), must 
satisfy the conservation law of the radiation power 
following directly from Eq. (2). Second, if the imaginary 

part of ∼ε is nonzero then, because of nonconservation of the 
power, it is necessary to take into account some additional 
considerations to establish the unambiguity. In particular, 
the Ito–Stratonovich dilemma is solved here under 
condition that the random actions of real and imaginary 

parts of ∼ε are treated within the framework of the same 
calculus.  

Let us consider the electromagnetic wave propagation 
through the medium with fluctuations in the complex 
dielectric constant which varies as   

 

∼ε(z, ρ) = ∼εR (z, ρ) + i ∼εI (z, ρ) , (1) 
 

where ∼εR and ∼εI are the real and imaginary parts of ~e, 

respectively. Let the conditions of the problem be such that 
the wave propagation is described by the parabolic equation 
of quasioptics7  
 

2 i κ 
∂
∂z U + Δ

⊥
U + κ 

2
 
∼ε(z, ρ)U = 0 , (2) 

 

where U(z, ρ) is the complex amplitude of the electric field 

strength, k is the wave number, and the field ∼ε is taken to 
be Gaussian, homogeneous, and delta–correlated in the 
preferred direction of the wave propagation (i.e., along the 
z axis, whereas ρ is the radius vector in the transverse 
direction). Note, that this approximation is adequate for the 
propagation of optical radiation through the turbulent 
atmosphere as well as for the propagation of acoustic waves 
in the ocean in which the sound velocity is the fluctuating  
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quantity. The mean value of the imaginary part of ε is 
eliminated from Eq. (2) because it has no direct effect on 
the statistical wave characteristics and will be taken into 
account in the last section when analyzing the results.  

First two sections of the paper deal with the derivation 
of the closed system of equations describing the behavior of 
the mean field <U> and coherence functions  
 

Γmn(z, {ρj}j=1, n+m) = <∏
j=1

n

 ∏
l=n+1

n+m

 U(z, ρj) U *(z, ρl)>  

 

for unspecified type of stochastic calculus. These equations 
are the generalization of the well–known equations, derived 
in Ref. 7, to the case of the wave propagation through the 
media with the complex dielectric constant fluctuations. In 
the third section the solution for the random field 
realization within the framework of the arbitrary calculus 
are represented in terms of the solution after Stratonovich. 
Analysis of the results and choice of the calculus are given 
in the last section. In the basic part of the paper the case is 

considered in which both the real and imaginary parts of ∼ε 
follow the same calculus. As for the problem of different 

calculuses for ∼εR and ∼εI , it is briefly discussed at the end of 

the paper.  
 

1. MEAN FIELD EQUATION 

 
Simultaneously with Eq. (2), we hereafter will use the 

parabolic equation in the form  
 

δU(z, ρ) = 
i

2 κ
 Δ

⊥
U(z, ρ)δ z + 

i k
2  U(z~, ρ) δW(z; ρ) . (3) 

Here δW(z; ρ) = ∼ε(z, ρ)δ z is the Wiener process (the term 
field would be more correct, nevertheless we follow the 
conventional terminology) with zero mean  
 

<δW(z; ρ)> = <∼ε(z, ρ)> δ z = 0 (4a) 
 

and correlation functions  
 

<δW(z; ρ
1
) δW(z; ρ

2
)> = <∼ε(z, ρ

1
) 

∼ε(z, ρ
2
)> δ z δ z = 

 

= A
εε
(ρ

1
 – ρ

2
) δ z ; 

 

<δW(z; ρ
1
) δW *(z; ρ

2
)> = 

 

= <∼ε(z, ρ
1
) ε∼*(z, ρ

2
)>δ z δ z = A

εε*
(ρ

1
 – ρ

2
)δ z . (4b) 

 

In so doing the functions  
 

A
εε
(ρ) = ARR (ρ) + 2 i ARI (ρ) – AII (ρ) , 

 

A
εε*

(ρ) = ARR (ρ) + AII (ρ) (5) 
 

are expressed in terms of the three–dimensional spectral 

power density Φqq′(κz, κ) of the components of ∼ε 
 

Aqq′(ρ) = 2π ⌡⌠ ⌡⌠ d2
κ Φqq'(0, κ) eiκρ , 

 

where {q, q′} = {R, I}. The value of U(z~, ρ) in the second 
term in the left side of Eq. (3) is determined in the plane 
z = zi + αδz (see Fig. 1), so that depending on the value of 

the parameter α ∈ [0, 1] we deal with different stochastic 
calculuses. In particular, the value α = 0 corresponds to the  

solution after Ito and the value α = 1/2 corresponds to the 
solution after Stratonovich which is usually used when 
solving Eq. (3). We do not specify the value of the 
parameter α so far, but generalize the known results 
reported in Ref. 7 for the mean field within the framework 
of the Stratonovich calculus to the case of the arbitrary 
calculus. The angular brackets denote averaging over the 

ensemble of realizations of the random field ∼ε.  
In accordance with Eq. (3), we write down the 

equation for the mean field  
 

δ<U(z, ρ)> = 
i
2κ

 Δ
⊥
<U(z, ρ)>δz +

i κ
2 <U(z∼, ρ) δW(z; ρ)>. (6) 

 

To determine the correlator <U(z∼)δW(z)> we expand 
U in the Taylor series around the point zi (see Fig. 1)  
 

U(z∼) = U(zi) + αδU(zi)  
 

and making use of Eq. (5), the property of nonadvanced 
function within the framework of the Ito calculus, and the 
field characteristics δW(z, ρ) from Eqs. (4), we obtain  
 

<U(z∼) δW(zi)> = <[U(zi) + αδU(zi)] δW(zi)> = 
 

= 
i κ
2 α<U(zi, ρ)><δW 

2(zi; ρ)> = 
i κ
2  α A

εε
(0)<U(zi, ρ)>δ z. (7) 

 

Substitution of Eq. (7) into initial equation (6) gives the 
equation for the mean field   
 

δ<U(z, ρ)> = 
i
2κ

 Δ
⊥
<U(z, ρ)>δz – 

κ
2

4  α A
εε
(0)<U(z, ρ)>δ z  

or in a more usual form   
 

2i κ 
∂
∂z<U> + Δ

⊥
<U> + 

i κ3

4  α A
εε
(0)<U(z, ρ)> = 0 . (8) 

 

Equation (8) for α = 1/2 (the Stratonovich calculus) 

coincides with that found previously (for ∼εI = 0) by the 

alternative method (see, for example, Ref. 7).  
To conclude, we note that the solution of Eq. (8) can 

be represented as  
 

<U(z, ρ)> = <U(z, ρ)>
1/2

 exp[ ]– 
κ
2

4  (α – 1/2) A
εε
(0) z , 

(9) 
 where <U(z, ρ)>

1/2
 is the solution after Stratonovich for 

α = 1/2. Hereafter the notation F
1/2

 (for the functions of 

the parameter α) has the same meaning.  
 

 
 

FIG. 1. 
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2. EQUATION FOR THE COHERENCE FUNCTIONS 

 
Here we need to use one more unusual property of the 

functions of the Wiener process. [The first one consists in 
the ambiguity of going to the equations for the statistical 
moments which is a consequence of the dependence of the 
results of averaging, for example, in Eq. (7), on the choice 

of the point z∼(α).] In the root–mean–square limit within 
the framework of the Ito calculus the relation  
 

δW(z; ρ
1
) δW(z; ρ

2
) = A

;;
(ρ

1
 – ρ

2
) δ z  

 

holds,1 which is generalized to the case of the arbitrary 
calculus  
 

δW(z; ρ
1
) δW(z; ρ

2
) = (1 – 2α) A

εε
(ρ

1
 – ρ

2
)δ z . (10) 

 

As a consequence, for the differential of the product of two 
functions U taken at different transverse points, making use 
of the definition of δU in the form of Eq. (3) and retaining 
the terms of the first order in δ z, we have  
 

δ(U(z, ρ
1
) U *(z, ρ

2
)) = 

 

=U(z, ρ
1
)δU *(z, ρ

2
)+U *(z, ρ

2
)δU(z, ρ

1
)+δU(z, ρ

1
)δU *(z,ρ

2
)= 

 

= U(z, ρ
1
) δU *(z, ρ

2
) + U *(z, ρ

2
) δU(z, ρ

1
) – 

 

– 
κ

2

2  (α – 1/2) A
εε*

(ρ
1
 – ρ

2
) U(z, ρ

1
)U *(z, ρ

2
)δ z . (11) 

 

First let us derive the equation for the coherence function of 
the second order  
 

Γ
11

(ρ
1
, ρ

2
; z) = <U(z, ρ

1
) U *(z, ρ

2
)> . 

 

We will do that in a standard way. The equations for U
1
 

and U 
*
2
 are multiplied by U 

*
2
 and U

1
, respectively, and are 

subtracted one from another. After averaging and using 
Eq. (11), we obtain  

δΓ
11

 = 
i
2κ

 [Δ
1
 – Δ

2
] Γ

11
 δ z – 

κ
2

2  (α – 1/2) A
εε*

(ρ
1
 – ρ

2
) Γ

11
 δ z + 

 

+ 
i κ
2  <U

1
(z∼)U

2
 * (z∼) [δW

1
(z) – δW

2
 *(z)]> , 

where   
 

Uj (z) = U(z, ρj) , δWj (z) = δW(z; ρj) , 
 

Δj = 
∂2

∂x j 
2 + 

∂2

∂y j 
2 , and j = 1, 2. 

 

After the subsequent calculations similar to those given 
in Sec. 1 for the mean field we arrive at the equation for 
the coherence functions of the second order in the case of 
the arbitrary calculus  
 

2 i κ 
∂
∂zΓ

11
+[Δ

1
–Δ

2
]Γ

11
+
i κ 

3

4 [A
εε
(0)+A

εε
*(0)–2 A

εε*
(ρ

1
– ρ

2
)]Γ

11
+ 

 

+ 
i κ 

3

4 (α – 1/2)[A
εε
(0) + A

εε
*(0)] Γ

11
 = 0.    (12) 

 

This equation for α = 1/2 also coincides with the 

known equation for Γ
11

 (at ∼εI = 0) obtained previously 

within the framework of the Stratonovich calculus.7 Its 
solution may be represented in the form  
 

Γ
11

(ρ
1
, ρ

2
; z) = Γ

11
(ρ

1
, ρ

2
; z)

1/2
 × 

 

× exp{ }– 
κ 

2

4  (α – 1/2) [A
εε
(0) + A

εε
*(0)] z  . (12a) 

 

By performing the analogous calculations, Eq. (12) is easily 
generalized to the case of the (n + m)th field moment. Let 
us write down the final result without derivation  
 

2 i κ 
∂
∂z Γnm + 

⎣
⎢
⎡

⎦
⎥
⎤

∑
j=1

n
 
 
Δj – ∑

j=n+1

n+m
 
 
Δj  Γnm + 

 

+ 
i κ 

3

4  (α – 1/2) [n A
εε
(0) + m A

εε
*(0)] Γnm + 

 

+ 
i κ 

3

4  

⎣
⎢
⎡
∑

 
 ∑

 
 

j, l=1

n

A
εε
(ρj – ρl) + ∑

 
 ∑

 
 

j, l=n+1

n+m

 A
εε
*(ρj – ρl) – 

 

– 2 
⎦
⎥
⎤

∑
j=1

n
 
 ∑
l=n+1

n+m
 
 
A
εε*

(ρj – ρl)  Γnm = 0 . (13) 

 

Equation (13) within the framework of the Stratonovich 
calculus (α = 1/2) in the case of radiation propagating 

through the transparent medium (Im∼εI = 0) is also 

equivalent to that obtained in Ref. 7. Its solution by 
analogy with Eqs. (9) and (12a) can be written down as  
 

Γnm(z, {ρj}j=1, n+m) = Γnm(z, {ρj}j=1, n+m)1/2
 × 

 

× exp{ }– 
κ 

2

4  (α – 1/2) [n A
εε
(0) + m A

εε
*(0)] z . (14) 

 
It can be seen from Eqs. (9), (12a) and (14) that the 
solution of Eq. (2) for the random realization of the 
complex field amplitude within the framework of the 
arbitrary calculus is expressed in terms of the solution after 
Stratonovich  
 

U(z, ρ) = U(z, ρ)
1/2

 exp{ }– 
κ 

2

4  (α – 1/2) A
εε
(0) z . (15) 

 

Now let us demonstrate that this statement immediately 
follows from Eq. (2).  

 
3. SOLUTION FOR THE FIELD REALIZATION 

 
The solution of Eq. (2) is represented in the form of 

the Huygens–Kirchhoff integral  
 

U(z, ρ) = ⌡⌠ ⌡⌠ d2ρ
0
U

0
(ρ

0
) G(ρ, z⏐ρ

0
, 0) , (16) 

 

where G(ρ, z⏐ρ
0
, z

0
) is the Green's function of Eq. (2) 

satisfying the initial condition  
 
G(ρ, z⏐ρ

0
, z

0
)⏐z=z0

 = δ(ρ – ρ
0
) 

and obeying the group property  
 

G(ρ, z⏐ρ
0
, z

0
) = ⌡⌠ ⌡⌠ d2ρ

1
 G(ρ, z⏐ρ

1
, z

1
) G(ρ

1
, z

1
⏐ρ

0
, z

0
),(17) 

 

whose repeated application provides the basis for the 
representation of the Green's function G(ρ, z⏐ρ

0
, z

0
) in the  
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form of the Feynman path integral.9 Examples of using the 
functional integration in problems of wave propagation 
through the random media can be found in Refs. 8 and 10. 
Here we make use of the idea from Ref. 9 and treat the 
solution of Eq. (2) in the elementary interval 
z ∈ [zi + δz, zi] (see Fig. 1) in which the transverse change 

in ∼ε can be neglected (ρ in ∼ε(z, ρ) is taken to be the fixed 
parameter). Then we go over from Eq. (2) to the equation 
for the Fourier transform of the function G(ρ, zi + δz⏐ρ

0
, zi) 

 

G
∼
(κ, zi +δz ⏐ρ

0
, zi) = 

1

(2π)2 ⌡⌠
 
 ⌡⌠

 
 
d2ρ G(ρ, zi + δ z⏐ρ

0
, zi) e

–iκρ, 

which is given by   
 

δG
∼
(κ, z⏐ρ

0
, zi) = – 

i
2κ

 κ 
2 G

∼
(κ, z)δz + 

i κ
2  G

∼
(κ, z∼) δW(z; ρ) , 

 

G
∼
(κ, z⏐ρ

0
, zi)⏐z=zi

 = 
1

(2π)2 e
–iκρ

0 . (18) 

 

The solution of Eq. (18) within the frameworks of both the 
Ito and Stratonovich calculuses is given in Ref. 1 and can 
be easily generalized to the case of the arbitrary calculus 
making use of relation (10) for the Wiener process. Finally, 
taking the inverse Fourier transform of the Green's function 
in the elementary interval δ z, we obtain  
 

G(ρ, zi +δ z⏐ρ
0
, zi) = G(ρ, zi +δ z⏐ρ

0
, zi)1/2

 × 
 

× exp{ }– 
κ

2

4  (α – 1/2) A
εε
(0) d z  . 

 

Furthermore, by analogy with Ref. 9, repeatedly employing 
the property in the form of Eq. (17), we finally arrive at 
the Green's function   
 

G(ρ, z⏐ρ
0
, z

0
) =G(ρ, z⏐ρ

0
, z

0
)
1/2

 exp{ }– 
κ
2

4  (α – 1/2)A
εε
(0)z

.  
This relation simultaneously with Eq. (16) leads to 
Eq. (15).  

 
4. CHOICE OF STOCHASTIC CALCULUS 

 
To eliminate the ambiguity and to determine the value 

of the parameter α, we make use of the additional condition 
for the solution of Eq. (2). For this purpose we take into 

account the fact that in the transparent medium (∼εI = 0) 

the radiation power, which is defined by the relation  
 

P(z) = ⌡⌠ ⌡⌠ d2ρ I(z, ρ) ,  

 

has to be preserved,7 where I(z, ρ) is the radiation 
intensity.  

Making use of the definition of P(z), Eq. (2) for 
U(z, ρ), and relation (11) for the differential of the product 
of two functions, we obtain the equation for P(z) within 
the framework of the arbitrary calculus  
 

d
dz P(z) = – κ { }ε–I + 

κ

4 (α – 1/2) [A
εε
(0) + A

εε
*(0)]  P(z) – 

 

– κ ⌡⌠ ⌡⌠ d2ρ ε∼I (z, ρ) I(z, ρ) , P(z)⏐z=0
 = P

0
 , (19) 

 

where 
–
ε I is the mean value of the imaginary part of the 

complex dielectric constant of the medium.  
Let us next consider the wave propagation through the 

transparent medium, when εI = 0. Then the solution of 

Eq. (19) becomes  

P(z) = P
0 
exp{ }– 

κ
2

4  (α – 1/2) ARR(0) z  .  

 

It can be seen from this relation that the only calculus 
satisfying the conservation of the beam power in the 
problems of wave propagation is the Stratonovich calculus 
for α = 1/2. In other words the simultaneous solution of 
Eqs. (2) and (19) allows one to eliminate the ambiguity 
connected with the choice of the stochastic calculus.  

Considering that the fluctuations of the real and 
imaginary parts of the complex dielectric constant are 
subject to the same calculus, we can evidently generalize 
this result to the attenuating medium. Since the parameter 

α is independent of the components of ∼ε, the result must 
remain unchanged in the case of the complex dielectric 
constant.  

In conclusion, we consider briefly the case when the 

components of ∼ε are subjected to different stochastic 
calculuses. For example, this is the case of the strongly 
absorbing particles suspended in the turbulent transparent 
gas medium (in Ref. 11 the problem of a laser beam 
propagation in rain, formulated in a similar manner, was 
solved) providing that the random variations of the 

components of ∼ε are uncorrelated. Then the certain 
parameter αq (q = {R, I}) corresponds to each component 

and relation (10) is transformed to  
 

δW(z; ρ
1
) δW(z; ρ

2
) = (1 – 2αR) ARR (ρ

1
 – ρ

2
)δ z – 

 

– (1 – 2αI) AII (ρ1
 – ρ

2
) δ z .  (20) 

Meanwhile, the result obtained in the case of simultaneous 

solution for fluctuations of ∼εR remains valid, i.e., αR = 1/2, 

and taking into account Eq. (20), Eq. (19) for the power 
becomes   
 

d
dz P(z) = – κ { }ε–I – 

κ

4 (αI – 1/2) AII (0) P(z) – 

–
 

k ⌡⌠ ⌡⌠ d2ρ ε∼I (z, ρ) I(z, ρ) .  (21) 

Now
 
we make use of the fact that the parameter αI is 

independent of the path length and write down the solution 
of Eq. (21) in the zeroth approximation in the small 
parameter aef/L

0
 (where aef and L

0
 are the effective radius 

of a beam and the external scale of the turbulence, 
respectively)  
 

P(z) = P
0
 exp 

0

1
( ) (0) d ( ,0)

2 2

z

I I IIA z

⎧ ⎫
⎪ ⎪⎡ ⎤− − α − − ξ ξ⎨ ⎬⎢ ⎥⎣ ⎦⎪ ⎪⎩ ⎭

∫ Ι

κ

κ ε κ ε . 

 

This law of the power variation corresponds to the 
lognormal distribution of the probability of the random 
power variations. In this case only the mean power depends 
on the type of stochastic calculus and in principle any 
calculus is noncontradictory. Only returning to the real 
processes with finite correlation length and taking into 
account the fact that the effects engendered by the  
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approximation of the delta–correlated process must be 
negligible, one can set the value of the parameter 
αI = 1/2.  
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