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The basis of a phase control for a light beam propagating in a moving regular 
medium is optimized using numerical simulations. The possibility is examined of 
reducing a number of controllable coordinates based on the analysis of thermal 
distortions of the beam and the properties of the simplex method. It is shown that an 
adaptive correction in the optimized basis is rather efficient in a wide range of the 
nonlinearity parameter. 

 
Under nonstationary conditions one of the principal 

factors determining the efficiency of compensation for 
thermal blooming in real time is the fast response of an 
adaptive system. The simplest method for increasing the 
response rate without any additional instruments is likely to 
be optimization of the control basis with a beam wave front. 
The theoretical analysis1–5 reveals that under stationary 
wind refraction the dependence of correction quality on a 
number of the beam wave front modes used for control is of 
monotonic character. When a beam propagates along 
extended paths the main contribution to improvement of the 
beam energy characteristics at the object comes from the 
first– and second–order modes (tilt, defocusing, and 
astigmatism), relative weights of these modes in the 
optimized wave front being approximately equal. In the 
dynamic regime, when the trajectory of search strongly 
affects the value and position of the maximum of the goal 
function in space of controllable coordinates, the 
dependence of the correction quality on the used modes 
becomes more complicated. Because of this fact, under 
nonstationary wind refraction the basis must be optimized in 
a different way compared to the stationary regime that can 
lead to somewhat different results. 

In particular, instead of the criterion of focusing6 
widely used in quasistationary problems which characterizes 
instantaneous concentration of a light field on the object, 
the total light energy W incident onto an object during a 
given interval of time would be appropriate for use in the 
regime under study. Since the phase control is performed 
simultaneously with a "thermal lens" formation on a path, 
poor corrections made at the initial step of the control 
frequently cause a decrease of the criterion W that cannot 
be restored even by successful corrections. In contrast, a 
properly chosen control basis makes it possible to purposely 
affect the formed thermal lens by using its features for 
improving the conditions of beam propagation. 

Comparative analysis of algorithms intended to 
compensate for thermal blooming based on cross–aperture 
sensing7,8 revealed that the most efficient in stationary 
problems is the simplex method which ensures the highest 
rate of convergence of iteration process of phase 
optimization. Under nonstationary wind refraction it was 
found that a step–wise change of coordinates under control 
typical for the simplex method, brings about a forced beam 
scanning thus improving the conditions of its propagation. 
In this connection it is expedient to optimize the control 
basis using the simplex method. 

 

The beam propagation in a moving regular medium is 
described by the system of dimensionless equations 

 

2i∂E/∂z = Δ
⊥
E + RTE ; (1) 

 

∂T/∂t + ∂T/∂x = EE* , (2) 
 

where the standard designations and normalization are 
used.6 At the medium entrance (z = 0) the complex 
amplitude of a light field is described as 
 

E(x, y, 0, t) = E
0
exp (iU(x, y, t)) , (3) 

 

where the wave front U(x, y, t) under control is a 
combination of basis modes. In accordance with the structure 
of the beam phase distortions under thermal blooming along 
an extended path it is reasonable to choose U in the form 
 

U(x, y, t) = ϑ(t) x + Sx(t) x2/2 + Sy(t) y2/2 . (4) 
 

 
 

FIG. 1. Dynamic control of a beam phase using the 
simplex method with an optimum step (curve 1). Behavior 
of the criterion of focusing Jf (t) without control 

(curve 2). Conditions of propagation: z
0
 = 0.5, R = –20. 

 

Depicted in Fig. 1 is typical dynamics of the criterion 
of focusing Jf (t) when a beam phase is controlled in the 

basis (4) using the simplex method with an optimal step.9 
The coordinates ϑ, Sx , and Sy being controlled are shown 

in Fig. 2 as functions of time. 
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FIG. 2. Behaviors of the controllable coordinates during 
optimization of the criterion Jf based on the simplex 

method with an optimum step. Conditions of propagation: 
z
0
 = 0.5, R = –20. 

 
It can be seen from Fig. 2 that in the course of 

dynamic phase correction the variables Sx and Sy are found 

to be proportional to each other at each moment of time. In 
this connection it is reasonable to try to reduce the number 
of independent variables in the simplex search by 
introducing a combined mode (x2/4 + y2/2), i.e., by 
representing the wave front as  

 
U = ϑ x + S(x2/4 + y2/2) . (5) 
 

 
 

FIG. 3. Variations of the controllable coordinates S and θ 
and displacement of the energy center of the beam x

d
 

during a two–dimensional control using a combined mode. 
Conditions of propagation: z

0
 = 0.5, R = –20. 

 
The calculations show that in this case the beam is 

focused better and, in spite of scanning, it is only slightly 
displaced from the axis of the initial propagation (Fig. 3). 
It should be noted that following the theory of the method 
the optimal length of a simplex edge depends on the 
dimensionality of control space, i.e., increases with its 
increase. Since the changes in the variables under control 
occurring during the search–for process are proportional to 
the length of the simplex edge, the two–dimensional 
control in the basis (5) turns out to be "smoother" than the 
three–dimensional one in basis (4). 

The other method for reducing a number of 
independent variables can be proposed based on the analysis  

of phase distortions of a beam under the conditions of wind 
refraction. Taking into account the fact that a thermal lens 
along the path possesses a focusing action in the plane 
perpendicular to the velocity of the medium it is reasonable 
to fix Sx by putting, e.g., Sx = 0, i.e., to control the tilt 

and cylindrical focusing in the direction perpendicular to 
the medium movement, then 
 

U = ϑ x + Sy y2/2 . (6) 
 

It is also possible to assume that in some cases it is rather 
efficient to control only tilt of the wave front at Sx and 

Sy = 0, i.e., 
 

U = ϑ x . (7) 
 

The final results of modeling the above–considered 
algorithms within a wide range of values of the nonlinearity 
parameter R are given in Figs. 4a and b, where the correction 
efficiency is estimated based on the total light energy W 
incident onto the receiving aperture during the control time 
T = 3 τ

ν
 in a ratio to the same energy without control W

0
.  

 

 
 

FIG. 4. Efficiency of correction during the time of control 
T = 3 τ

v
 as a function of (a) the nonlinearity parameter R and 

(b) a number of controllable coordinates k. Figures in 

parentheses are the numbers of formulas describing the bases 
used. 
 

As can be seen from the figure, most efficient is the 
control in different bases depending on the nonlinearity 
(radiation power) of the medium. In particular, when 
⏐R⏐ ≤ 20 the three–dimensional basis (4) is more favourable, 
while for stronger nonlinearities the two–dimensional bases 
(5) or (6) are preferred. In a wide range of the nonlinearity 
parameter 0 ≤ ⏐R⏐ ≤ 40 a combined mode (basis (5)) is 
preferable compared with a single focusing in the direction 
transverse to the medium movement (basis (6)). The control 
by tilting the wave front (7) only, at all ⏐R⏐ is the least 
efficient control. On the whole it can be stated that in a two– 
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dimensional control in basis (5) the physical peculiarities of 
the problem under study and the properties of the simplex 
search agree best of all.  
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