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Interaction of a powerful laser radiation with high–melting sol particles in 
vacuum is considered. The volume extinction coefficient has been found for a 
monodisperse sol at its gas–dynamic vaporization taking into account the 
recondensation based on the results from Refs. 2 and 3. 

 
Propagation of a high–power radiation with power 

density of 109 W/m2 through a disperse media of high–
melting particles can cause heating of the latter to the 
temperatures1 3000–5000 K. At such a high temperature the 
pressure of saturated vapor of the evaporating particle 
substance becomes significantly greater than the 
atmospheric pressure. Under these conditions removal of a 
vaporized substance away from the particle surface occurs at 
a supersonic speed, and the application of the diffusion 
model becomes impossible. A gasdynamic model of 
vaporization of an individual high–melting particle in the 
high–power laser field in vacuum has been proposed in 
Ref. 2. This model makes it possible to calculate the 
thermodynamic vapor characteristics taking into account its 
recondensation and formation of the cloud of secondary 
particles. Size distribution function (SDF) of secondary 
particles, as well as the size of secondary particles 
themselves as a function of the distance from the primary 
particle have been obtained in Ref. 3 based on the results 
from Ref. 2. 

This paper deals with the volume extinction coefficient 
of a disperse medium containing the high–melting particles 
in vacuum being vaporized under the action of radiation 
taking into account recondensation. 

Let us assume that all the primary particles have one 
and the same size, i.e., it is a monodisperse sol which is 
described by the SDF in the form of δ–function 

 
f
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(a, z) = n(z) δ(a – a

0
(t)) , (1) 

 
where n(z) is the number of primary particles per m3 at the 
distance z from the radiation source along the direction of 
propagation of electromagnetic wave with the density of 
energy flux I and a

0
(t) is the time–dependent radius of an 

evaporating particle.4 
Let us also assume that the number of primary 

particles is quite small so that they do not influence on each 
other during vaporization, and that the vaporization of all 
particles starts simultaneously. In addition, let us neglect 
the particle motions under the action of light pressure and 
consider the statistical model of aerosol.  

In the single–scattering approximation the equation 
describing the behavior of the density of energy flux I of 
the incident radiation in the "primary + secondary 
particles" system is written in the form 

 
dI(z)
dz  + α(z) I(z) = 0 , (2) 

 
where α(z) is the volume aerosol extinction coefficient of 
the primary and secondary particles so that the relation 
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is satisfied. Here α

1
 and α

2
 are the volume extinction 

coefficients of the primary and secondary particles, 
respectively. 

According to Ref. 5, the relations for α
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(z) and α
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are valid. Here a

1
, a

2
, f

1
, and f

2
 are the size and SDF of 

primary and secondary particles, respectively and k
0
(a, λ) is 

the extinction efficiency factor.  
The characteristic time of the change of the particle size 

due to its vaporization has been estimated in Ref. 1 for the 
density of energy flux of the incident radiation 
I = 3⋅109 W/m2. This time was about 10–4 s for a = 10 μm. 
The characteristic time of establishing the stationary fields of 

the thermodynamic parameters t ∼ a/ν– ∼ 10–8 s for  

ν– ∼ 1000 m/s, where ν– is the mean thermal speed of the 
vapor molecules. Therefore, the radius of a 10–μm particle 
changes insignificantly during the period of establishment the 
stationary fields. One can show that this regularity holds in a 
wide range of atmospheric aerosol size and densities of the 
energy flux I ∼ (107–1010) W/m2. The problem in finding the 
distribution function of secondary particles have been solved 
in a quasistationary approximation in Ref. 3. Let us find the 
volume aerosol extinction coefficient of the secondary particles 
in the same approximation. 

According to the gas–dynamic model2 of the vaporization 
of a single high–melting particle, molecules of the vaporized 
substance can be in both the gaseous and condensed solid 
phase. The estimates presented in Ref. 2 showed that the size 
of the area of generation of nuclei of a new phase is about 10–

6 m, and the characteristic time of the vapor spreading from 
the particle surface is approximately 10–8 s. Therefore, one can 
assume for the first approximation that the whole vapor 
surplus instantaneously condensates on the generated 
condensation nuclei in a very narrow region, and the vapor is 
in the thermodynamic equilibrium with the condensate. 

As is shown in Ref. 3, the mass of the vaporized 
substance at a distance ∼ 20 a0

 from a particle becomes 

comparable to the mass of the primary particle, since here  
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the particle free path becomes comparable with the particle 
size, and the speed of the vapor spread exceeds the sound 
speed in a gas. Then small particles have insufficient time 
for growth and spread farther with carbon vapor. The 
concentration of secondary particles in the area of the nuclei 
generation was found in Ref. 3 on the basis of introducing 
the vapor condensation degree as a function which 
characterizes a two–phase system and previous 
approximations. Thus, it is about 1021 particles/m3 for a 
primary particle 10 μm in size. If the secondary–particles 
concentration is known at any distance r from the center of 
a primary particle, one can find their distribution function 
for the case of spherically symmetric vaporization of the 
particle. It has been obtained in the form3 
 

F(a, r) = n(r) δ(a – a(r)) , (5) 
 

where n(r) and a(r) are the concentration and the size of 
secondary particles at the distance r from the primary 
particle. Then 
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is some SDF of particles generated by a single primary 
particle. The dimensionality of the function ϕ(a) is 1/m, in 
contrast to the dimensionality of the SDF of primary 
particles. The upper limit of integration over r is chosen to 
be equal to 20 a

0
 based on the estimates presented in Ref. 2. 

Thus, by calculating integral (6) we obtain 
ϕ(a) = n(r(a)) 4π r 

2(a) , (7) 
 

where r(a) is the inverse function of the known function3 
a(r). Let us note that since a

0
 ≤ r ≤ 20 a

0
, in Eq. (7) a is in 

the range a(a
0
) ≤ a ≤ a(20 a

0
) and a(a

0
) is the initial size of 

a nucleus of a new phase. It is equal to the critical size6 
a

cr
 = 10–9 m. Then the SDF of secondary particles has the 

form 
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and the expression for α
2
(z) is written as follows: 
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where the upper integration limit is chosen to be equal to 
2 a

cr
 based on the data from Ref. 3. 

One can find the solution for α
2
(z) by the numerical 

integration, since the integrand contains the complex 
dependence on r in the function n(r(a)). Let the initial 
aerosol be composed of carbon particles with a

0
 g 10 μm 

and n(z) is some constant value, for example, 108 m–3, what 
corresponds to the condition of dusty air. 

The extinction efficiency factor for secondary particles 
is found by the well–known calculation technique described 
in Ref. 5 for λ  = 10 μm and the complex refractive index of 
carbon m = 1.95 – i⋅0.66. The concentration and size of 
secondary particles are known functions3 of r. The 
integration gives the value α

2
(z) ∼ 10–5

 m–1. 

One can write the following relation for α
1
(z) 
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which results in α

1 
≈ 6⋅10–2

 m–1, i.e., α
2
(z) is about 100 

times greater than α
1
(z). Thus, the main contribution to the 

total volume extinction coefficient comes from the primary 
particles, while the secondary particles are practically 
optically inactive because of their small size. 
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