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The asymptotically optimal algorithm for measuring an angular coordinate of the 
light source with phase fluctuation distribution not following the Gaussian law with 
independent increments is synthesized. 

 

The problem in measuring an angular coordinate of a 
source of coherent light based on the phase front of a 
receiving lens is considered in Ref. 1. It is assumed that the 
phase fluctuations caused by the effect of a great amount of 
inhomogeneities in the propagation medium are distributed 
following the normal distribution law. However, as shown 
in Ref. 2, this condition does not always hold. Therefore it 
is interesting to analyze the effect of the distribution law of 
phase fluctuations on the type of the optimal algorithm and 
the potential accuracy in measuring an angular coordinate. 

Let us consider a meter whose input signal is a 
digitized sampling of counts of a phase difference over the 
aperture 
 
Y = β X + N , (1) 
 
where β is the amplitude factor related to the angle of a 
light–signal arrival in terms of the known dependence, 
X = ⎢⎢x
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⎢⎢T is the vector of noise phase 

fluctuations. Thus the problem is reduced to measuring the 
parameter β which is of energy nature. 

To solve this problem the following assumptions 
should be made. Let us consider that the antenna is matched 
with the direction of the beam arrival, i.e., β = 0, the 
parameter β is measured against the background of 
asymptotically intense sampling of noise with independent 
increments, and the distribution of non–Gaussian 
increments of noise n

i
 follows the law  

 

p(y) = a exp [ – b⏐y⏐2ν] . (2) 
 

Taking into account the aforementioned assumptions 
the logarithm of the likelihood ratio takes the form3 
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Since the measured parameter is of energy nature, in the 
approximation of the probability density logarithm we must 
restrict our consideration to the first three terms of the 
Taylor series 
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Substituting expression (4) in Eq. (3) and using the 
likelihood equation dlnl/dβ⏐

β=β
∧ give the optimal estimate 
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As can be seen from Eq. (5), in constructing the 

optimal meter of energy parameters, in contrast to 
measuring the nonenergetic ones, knowledge of the second 
derivative of the probability density is also required. 

We now write the asymptotically synthesized optimal 
algorithm for measuring the parameter β in more detail. To 
this end, in Eq. (5) we substitute the first and second 
derivatives of the probability density which, by virtue of 
Eq. (2), have the form 
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We finally obtain 
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It is easy to verify that if the increments y

i
 are 

distributed following the normal distribution, i.e., ν = 1, 
then the algorithm of optimal measuring (6) is reduced to 
the known form3 
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Here ξ is the weight sum and q2 is the signal-to-noise ratio. 

Let the following designations be introduced by 
analogy with Ref. 3: 
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where ϕ(y) and ϕ′(y) are the characteristics of the nonlinear 
element3 and its derivative, respectively. The figure depicts 
the plots of probability densities and the corresponding  
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functions ϕ(y) and ϕ′(y). As can be seen in the figure, in 
measuring the amplitude multiplier the most important are 
those increments of the reference signal Y which are distorted 
with a nonlinear element with the characteristic ϕ(y) to the 
lowest degree. 
 

 

 
FIG. 1. 

 

Let us now estimate the gain in accuracy in the 
measurement of the parameter β provided with the 
asymptotically optimal algorithm (6) as compared with the 
algorithm being optimal in the presence of Gaussian phase 
fluctuations. 

The calculations reveal that the gain in the measurement 
accuracy takes place for the values ν ≠ 1. When ν = 1 the 
measurement errors are the same. Thus for ν = 3 the gain in m 
is equal to σ 2

β
/σ 2

βopt
 ≈ 2.5. The maximum gain in accuracy is 

observed for ν = 1, i.e., with increase of the so–called "tails" 
of probability density and when ν = 0.4 and m = 5. 

It should be noted that all of the foregoing discussions 
are valid when the sampling increments of phase fluctuations 
are independent. However, the latter, by their nature, are the 
correlated ones. It is obvious that the gain in measurement 
accuracy becomes lower with increase of correlation between 
the counts.  
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