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The effect of nonmonochromaticity of laser radiation, whose phase and amplitude 
are modulated by a random purely discontinuous Markovian process, on the 
fluorescence excitation spectrum has been studied analytically and by means of 
numerical calculations. It is shown that, for fairly high radiation intensities, the phase 
and amplitude modulations affect the line profile in essentially different ways. In 
particular, the amplitude modulation causes line splitting into four components. The 
latter is most pronounced in the case in which Einstein coefficients are the same for 
two allowed optical transitions at mean durations of random trains exceeding the 
radiative decay time of the upper level. A combined effect of the phase–amplitude 
modulation and collisions on the line profile is examined.  

 

It has been predicted theoretically1 that absorption of 
monochromatic CW radiation resonant with allowed optical 
transitions by a closed three–level system with closely 
spaced lower levels results in the formation of a single line 
profile in the excitation spectrum of stationary fluorescence. 
Due to interference of polarizations of optical transitions 
attained through the polarization in the forbidden low–
frequency transition, the resonance profile in the 
fluorescence excitation spectrum (or absorption) is 
considerably shifted and broadened as the ground state 
splitting is reduced. Under optimal conditions, the 
interference shift can amount to over a thousand linewidths 
of allowed transitions and is limited by collisions, time of 
flight of atoms through the light beam, and laser 
nonmonochromaticity. The shift was examined in detail as a 
function of radiative and collisional parameters of 
relaxation, splitting Δ, and laser pulse duration. It was 
noted in particular that the extreme behavior of the shift as 
Δ → 0 predetermines the possibilities of a thoroughly 
analyzing statistical properties of radiation.  

The object of this work is to study this possibility and 
the constraints imposed on the interference shift under 
fluorescence excitation by radiation whose phase and 
amplitude are modulated by a purely discontinuous 
Markovian process. The choice of this process is related to 
the fact that in a number of situations similar to the one 
considered here it enables one to derive analytical solution 
of a problem, nonlinear in the noise intensity, for any depth 
of modulation.2–4  

Let the Hamiltonian of interaction between the laser 
radiation and the system have the form  
 

H
∧

int(t) = � [V
∧

 + υ
∧
(t)] exp [ – iω t – iα(t)] , (1) 

 

where α(t) and υ
∧
(t) are the randomly (discontinuously) 

time–varying phase of radiation and the part of H
∧

int given 

by amplitude fluctuations of the electric field of the light 
wave and ω is the optical carrier frequency.  

Stationary equations for the density matrix of the 
system under consideration expressed in terms of the  

interaction representation which includes the random phase 
α(t) can be given following Refs. 1–4 in the form 
 

2γρ0 – (A1 – γ)ρ1 + 2(V1 + υ1) Im R1 = γ – γav(ρ0 – �ρ0�0) ; 
 

γ1ρ1 –2(V1 + υ1)Im R1 –2(V2 + υ2)Im R2 = – γav(ρ1 – �ρ1�0); 
 

[Γ1 – i(Ω – δ1)] R1 – i(V2 + υ2) R3 – i(V1 + υ1) (ρ0 – ρ1) = 

 

= – γav(R1 – �R1�1) ; (2) 

 

[Γ2 – i(Ω + Δ – δ2)] R2 – i(V1 + υ1) R*
3 – i(V2 + υ2) × 

 

× (ρ0 + 2ρ1) = i(V2 + υ2) – γav(R2 – �R2�1) ; 
 

[Γ3 + i(Δ + δ3)] R3 – i(V2 + υ2) R1 – i(V1 + υ1) R*
2 = 

 

= – γav(R3 – �R3�0) . 
 
Here ρ0 and ρ1 are the populations of the lower ground (0) 

and upper (1) energy levels, Ri = Ri′ + iR i′′ (i = 1, 2, and 3) 

are complex off–diagonal elements of the density 
(polarization) matrix of the allowed optical transitions 
0 → 1 (i = 1) and 2 → 1 (2) and the forbidden low–
frequency transition 0 → 2 (3), γ1 = A1 + A2, A1 and A2 are 

the first Einstein coefficients for the allowed transitions 1 
and 2, and Γi and δi (i = 1, 2 and 3) are the polarization 

relaxation constants and collision–induced shifts for the 
corresponding transitions, γ is the collisional mixing rate for 

the zeroth and second level populations; H
∧

1,2 and υ
∧

1,2 are 

the real matrix elements of the operators V
∧
 and υ

∧
 for the 

transitions 1 and 2, Ω = ω – ω10 is the laser frequency 

detuning from the eigenfrequency of the transition 1, 
Δ = ω20 is the frequency of the forbidden low–frequency 

transition 3 or the ground state splitting, γ av
 –1 is the mean  
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duration of random trains, the radiation being split up into 
a sequence of such trains with certain phases and 
amplitudes, and double angular brackets denote an integral 
operator related to the averaging of the density matrix 
elements ρ(α, ε) over the random phase α and the 
dimensionless electric field amplitude ε which is 
proportional to υ1,2 = ε υ1,2

0 . Assuming uncorrelated train to 

train variation of ε we have 
 

�ρ(α, ε)�0= ⌡⌠ ⌡⌠ ρ(α1, ε1) f(α – α1) ϕ(α1) ϕ(ε1) dα1 dε1/ϕ(α); 

 (3) 

�ρ(α, ε)�1 = 
 

= ⌡⌠ ⌡⌠ ρ(α1, ε1) e
i(α1–α)

f(α – α1) ϕ(α1) ϕ(ε1) dα1 dε1/ϕ(α), 

 

where f(α – α1) is the conditional probability density of the 

phase jump from α to α1, and ϕ(α) and ϕ(ε) are the 

stationary distribution densities for α and ε at any time 
section of the process.  

Let us average Eqs. (2) over phases after multiplying 

them by ϕ(α). On account of ⌡⌠ ϕ(α)dα = 1, operators (3) are 

reduced to the averaging of ρ(ε) = ⌡⌠ ρ(α, ε)ϕ(α)dα over 

random amplitudes 
 

�ρ(α, ε)�0 → ⌡⌠ ρ(ε1) ϕ(ε1) dε1 ≡ <ρ(ε)> , 

 

�ρ(α, ε)�1 → (γ~ph + iδ~ph) <ρ(ε)> ; (4) 
 

γ~ph + iδ~ph = ⌡⌠ eiβ f(β) dβ . 

 

Here γ~ph is the measure of the phase memory in the random 

modulation process. In particular, for γ~ph = 0 the phases of the 

adjacent trains are absolutely uncorrelated whereas for γ~ph = 1 

and δ~ph = 0 the phases are invariant from train to train, i.e., 

no phase modulation is observed.2  
Using the linearity of Eqs. (2) relative to the field 

amplitudes and the H
∧

int(t) splitting into two parts related 

to the purely phase (V
∧

) and phase–amplitude V
∧

 
modulations the phase averaged elements of the density 

matrix ρ(ε) can be represented as ρ(ε) = ρ
–

 + ρ~(ε), where 
the first term is for a purely phase modulation, while the 
second one is for the phase–amplitude modulation. As a 
result, problem (2) takes the form  

 

⎩⎪
⎨
⎪⎧

 

[ A
–∧

 + γav(I
∧

8 – C
∧
)] ρ–

∧
 = B

–∧
;

[ A
–∧

+A
–∧(ε)+γav I

∧

8] ρ
∼
∧
(ε)+A∼

∧
(ε) ρ–

∧
 = B

∼∧
(ε) + γavC

∧
<ρ
∼
∧
(ε)> ,

     

 (5) 

ρ
–∧

 = (ρ–0, ρ
–

1, R
–
′1, R

–
′′1, R

–
′2, R

–
′′2, R

–
′3, R

–
′′3)

T , 

 

where the column ρ
∼
∧
 is represented in the same way as ρ

–∧
, I
∧

8 

is the unit matrix, and the ε–independent matrices A
–∧

 and C
∧
 

and the column B
–∧

 as well as the matrices A
∼
∧
(ε) and B

∼∧
(ε) are 

readily specified by means of Eqs. (2), (4) and (5). 
Solution (5) averaged over phase and amplitude 

fluctuations has the form 
 

ρ
–∧

 = [A–
∧
 + γav(I

∧

8 – C
∧
)]–1 B

–∧
 , 

 

<ρ
∼
∧
(ε)>=[I

∧

8 – γav<P
∧

 –1(ε)>] –1 <P
∧

 –1(ε) [B
∼∧
(ε) – A

∼
∧
(ε) ρ–

∧
]> ,       

 (6) 
 

P
∧
(ε) = A

–∧
 + A

∼
∧
(ε) + γavI

∧

8. 

 
Thus, an exact algebraic solution of the problem 

with the purely phase modulation (ν̂ = 0) as well as of a 
similar problem on a two–level system2 exists for 
arbitrary radiation intensities. The complete solution  

<ρ
∧
> = ρ

–∧
 + <ρ

∼
∧
(ε)> is found after performing quadratures 

which define an explicit form of the distribution function 
of the field amplitude fluctuations. 

In the case of the purely phase modulation the upper 
level population ρ1, which is proportional to the 

fluorescence excitation spectrum, has the form 
 

ρ
–∧

1= [2V 
2
1  V 

2
2  + γ (V 

2
2  G1 + V 2

1 G2 – 2V 
2
1  V 

2
2Q)]/[6V 

2
1  V 

2
2  +  

 

+ (A1 + 3γ)V 
2
2G1 + (A2 + 3γ)V 

2
1G2 +  

 

+ (γ1 – 6γ) V 
2
1  V 

2
2  Q + γγ1(G1G2 – V 

2
1  V 

2
2  Q 2)] ; (7) 

 
G1,2 = 

Γ
–

1,2 + [Γ
–

2,1 Ω
2
1,2+ V 

2
1  V 

2
2  D′′ (Γ

–
1,2 D′′ ∓ 2Ω1,2 D′)]/Det , 

 

Q = D′ + [Ω1Ω2 D′ + (Ω1Γ
–

2 – Ω2Γ
–

1)D′′ – V 
2
1  V 

2
2  D′D′′

2]/Det, 

 

Γ
–

1,2 = Γ1,2 + γc(1 – γ~ph) + V 
2

1,2 D′ , Det = Γ
–

1Γ
–

2 – V 
2
1  V 

2
2  D′ 

2, 

 

Ω1 = Ω – δ1 + δph + V 
2
2  D′ ′ , Ω2 = Ω + Δ – δ2 + δph – V 

2
2  D′ ′ , 

 

D′  = Γ3/L , D′ ′  = (Δ + δ3)/L , L = Γ
2
3 + (Δ + δ3)

2, δph = γavδ
~
ph . 

 
The form of solution (7) is almost the same as that used 
in the case of monochromatic radiation.1 The only 

difference is in the redefinition of Γ
–

1,2 and Ω1,2 

supplemented, respectively, with the summands γav(1 – γ~ph) 

and δph due to the phase modulation. The role of the 

phase modulation becomes most obvious in the absence of 
collisions (γ = Γ3 = δ1 = δ2 = δ3 = 0 and Γ1 = Γ2 = γ1/2) 

when Eq. (7) is considerably simplified 
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ρ
–

1 = 2V 
2
1  V 

2
2 Γ
–

1 Z
–1/ [(Ω – Ω0)

2 + Γ 2] ; (8) 
 

Ω0 = – δph – [A2V 
2
1Δ – (A2V 

4
1  – A1V 

4
2)/Δ]/Z , 

 

Γ2=Γ
–2

1+ 6γav(1 – γ~ph) V 
2
1  V 

2
2/Z+V 

2
1  V 

2
2 {2(A

2
1 V 

2
2  + A2

2 V 
2
1)+ 

 

+ [2γ1(A1V 
4
2  + A2V 

4
1) + (γ1 

2 + 4 A1 A2) V 
2
1  V 

2
2 ]/Δ}Z 2 , 

 

Z = A1 V 
2
2  + A2 V 

2
1  ,  Γ

–
1 = γ1/2 + γav(1 – γ~ph) . 

 

It follows from Eq. (8) that dephasing gives rise to an 
extra line shift, δph, due to the phase memory and extra 

line broadening associated with the second term in the 

expression for Γ2 and the difference of Γ
–

1 from γ1/2. The 

latter is maximum in the absence of the phase correlation. 
Thus, as a matter of principle, the random phase 
modulation does not eliminate the giant interference shift 
discussed in Ref. 1. The extra "red" shift δph and 

broadening detected experimentally will permit 
quantitative determination of such a characteristic of the 
random Markovian process as the measure of the mean 
phase memory. 

Let us now examine a more complicated case of the 
phase and amplitude modulations being combined. In 

determining <ρ~1> (Eq. (6)) we derived analytical 

expressions for the matrix elements P
∧

 –1, while the 

amplitude averaging of the matrix I
∧

8 – γav<P
∧

 –1(ε)> and 

its inversion were performed numerically, using Gaussian 

probability density distribution ϕ(ε) = exp(–ε2)/ π. 
Figures 1a–h illustrate calculated line profiles 

<ρ1(Ω)> = ρ
–

1(Ω) + <ρ~1(Ω)>, as a function of the mean 

train duration γ av
–1, amplitude modulation depth a = ν1

0

/V1 = ν2
0/V2, and the A1/A2 ratio at a constant average 

laser power ∼ <(V1 + ν1) 
2> in the absence of collisions.  

An analysis of Figs. 1c–h from the standpoint of the 
effect of the phase–amplitude modulation as compared to 
the purely phase modulation given by Eq. (8) accurate to 
three decimal places and Figs. 1a and b shows that the 
effect of amplitude modulation for α t 1 differs greatly 
for A1 = A2 and A1 ≠ A2. In particular, the line profile 

<ρ1(Ω)> for A1 = A2 and specified values of laser power 

tends to exhibit a distinct splitting into four components, 
which occurs at γav < γ1, while for A1 ≠ A2 the splitting is 

fairly weak (curve 2, Fig. 1e). In this respect the 
situation is similar to the one observed in Ref. 1 in which 
for the same values of the laser power and parameters A1 

and A2 the calculated line profiles ρ1(Ω) exhibit splitting 

at A1 = A2 in the range γ ∼ 0.1 γ1 in the presence of 

collisions. No splitting occurs (line narrowing is 
observed) in the case of A1 ≠ A2. However, collisions do  

induce line splitting into two components. This can be 
accounted for by the structure of the denominator in 
Eq. (7) for γav = δph = 0 expressed in terms of the 

fourth–degree polynomial of Ω. The observed splitting 
into four components due to the amplitude modulation is 
to be attributed to the complex composition of the line 

profiles <ρ1(Ω)> and <ρ~1(Ω)> (Eq. (6)). 

Following the behavior of the position of the 
maximum Ω0 of the line profile in the case of weak 

splitting (A1 ≠ A2), we note that the amplitude 

modulation virtually eliminates the great interference 
shift Ω0 g 20 γ1 for γav d 1, while for higher values of γav 

A is also in "antiphase" with the phase modulation, 
resulting in a noticeable negative shift Ω0 = – 14 γ1 for 

γav = 200 γ1. Notably, for the modulation depth a = 1 Ω0 

decreases due to a major contribution of the purely phase 

modulation (curves 5 and 6 in Fig. 1e) as γav increases 

from 50 to 200 γ1, whereas for a = 100, virtually without 

phase modulation, Ω0 amounts to 20 γ1 (curve 6, Fig. 1g). 

Our calculations of r
–

1(Ω) have shown that, under 

conditions in question for γav d γ1 and a d 1, the line 

profile <ρ1(Ω)> is narrower than ρ
–

1(Ω).  

Figures 1e, b, and 2 visualize the effect of the laser 
power on the shape of the fluorescence excitation 
spectrum for preassigned values of V1/V2 and a. The line 

splitting due to the amplitude modulation is seen to 
become much more pronounced as the power level 
increases. 

A combined effect of collisions and phase–amplitude 
modulation on the line profile <ρ1(Ω)> is illustrated in 

Fig. 3. A comparison between Figs. 3 and 2 where the 
same values of the line profile and radiation parameters 
were used but without any collisions, shows essentially 
non–Lorentzian profile under conditions in which the 
splitting is barely noticeable. This fact makes it possible 
to estimate γ ∼ γ1 for which the splitting is completely 

obscured. 
Summarizing the obtained results, it can be asserted 

that under saturation conditions in the absence of 
collisions the random phase modulation would give rise to 
an extra line shift and broadening rather than eliminate 
the interference shift, and the lines still have a 
Lorentzian shape. The phase amplitude modulation causes 
the line profile to split up at fairly high power levels and 
γav d γ1. The splitting is most pronounced in the case of 

the same constants of the radiative decay of the upper 
level into two lower levels. Collisions act to smear the 
splitting, thereby making the line profile even more 
complicated. 

Thus, the shape of the fluorescence excitation 
spectrum in a closed three–level system may be a 
sensitive tool in the analysis of the type of the random 
light modulation, the presence of the phase memory and 
collisions, and the properties of the radiative relaxation 
of the system.  

 



 

 

 
 

 

FIG. 1. Upper level population <ρ1> averaged over phase–amplitude fluctuations as a function of frequency detuning Ω for different mean train durations γav , amplitude 

modulation depths a and the A1/A2 ratio at constant average power. 1) γav = 10–4γ1, 2) γav = 0.1 γ1, 3) γav = γ1, 4) γav = 10 γ1, 5) γav = 50 γ1, and 6) γav = 200 γ1. a and 

b) a = 0.01, V1 = 9.9998 γ1, ν1 = 9.9998⋅10–2γ1; c and d) a = 0.316, V1 = 9.76 γ1, v1 = 3.08 γ1; e and h) a = 1, V1 = v2 = 8.17 γ1; g and f) a = 100, V1 = 0.141 γ1, ν1 = 14.1 γ1; a, 

b, d, f) A1 = 0.99 γ1, A2 = 0.01 γ1, Δ = 2.31 γ1; b, g, e, f) A1 = A2 = 0.5 γ1, Δ = 4.11 γ1, V2 = 0.1V1, ν2 = 0.1ν1, γ = Γ3 = δ1 = δ2 = δ3 = 0, Γ1 = Γ2 = 0.5 γ1, γ
~
ph = 0.4, and δ

~
ph = 0.2. 
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FIG. 2 Fluorescence excitation spectra for different mean train durations and average power higher than that in Fig. 1. 
V

1
 = ν

1
 = 16.33 γ

1
, V

2
/V

1
 = ν

2
/ν

1
 = 0.1. a) A

1
 = 0.99 γ

1
, A

2
 = 0.01 γ

1
, and Δ = 2.31 γ

1
 and b) A

1
 = A

2
 = 0.5 γ

1
, 

Δ = 4.11 γ
1
. Other designations being the same as in Fig. 1. 

 

 

 

FIG. 3 The effect of collisions on the shape of the spectrum of fluorescence excitation by the phase– and amplitude–modulated 
noise radiation for different mean train durations and A

1
/A

2
 ratios. a and c) γ = 0.1 γ

1
, Γ

3
 = 0.15 γ

1
, Γ

1
 = Γ

2
 = 0.65 γ

1
, 

A
1
 = 0.99 γ

1
, and A

2
 = 0.01 γ

1
, b and d) γ = γ

1
, Γ

3
 = 1.5 γ

1
, Γ

1
 = Γ

2
 = 2 γ

1
, A

1
 = A

2
 = 0.5 γ

1
. The curve designations and the 

values of the rest parameters are the same as in Fig. 2. 
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