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Propagation of a Gaussian pulse through a double–level medium is considered. 
Based on the system of Bloch–Maxwell equations the approaches that result in 
Bouguer's law with the absorption coefficient independent of time are analyzed. 

 
In the most methods of remote laser sounding of the 

atmosphere the propagation of optical pulse from a laser 
source to a distant atmospheric volume is analyzed at the 
first stage and then the propagation of radiation reemitted 
by the volume towards the receiving aperture at the second. 
In accordance with this, for calculations of the energy losses 
of sounding and reemitted pulses the square (for unshifted 
frequencies) or the product (for shifted frequencies) of the 
atmospheric transmission defined by empirical Bouguer's 
law are involved in equation of sounding. This is practically 
always valid for transmission of reemitted pulse because of 
its small power. As to the sounding pulse propagation, 
disagreements with Bouguer's law are possible when the 
pulse frequency occurs within a molecular absorption line. 
The best–known example of such a disagreement is the 
absorption saturation effect.1 In order to determine 
conditions of the Bouguer's law applicability let us use the 
Maxwell–Bloch equations describing within the framework 
of a semiclassical approach the interaction of sounding pulse 
with a two–level system modeling the molecular absorption. 

Let the subscript b indicates the low energy level and the 

subscript a does the upper one, ω0 = (Εa – Εb)/h– is the 

transition frequency. Dynamics of a two–level system 
interacting with the electric field E can be described by the 
system of the Bloch equations for the density matrix elements2 
 

ρ
⋅

aa = 
na – ρaa

T1
 + i 

μab

h–
 E(z′, t)(ρba – ρab) ; (1) 

ρ
⋅

bb

 

= 
nb – ρbb

T1
 + i 

μab

h–
 E(z′, t)(ρab – ρba) ; (2) 

ρ
⋅

ab

 
= (– iω0 – 1/T2)ρab + i 

μab

h–
 E(z′, t)(ρbb – ρaa) , (3) 

ρba
 = ρab*  . 

 

Here, ρaa(z′, t) and ρbb(z′, t) are the populations of the a 

and b levels at the point z′ for molecules having the velocity 
component νz, μab is the matrix element of the electric 

dipole moment, T1 and T2 are the longitudinal and 

transverse relaxation times, na and nb describe the 

equilibrium values of the populations and are given by 
 

na = 
Na e

–νz
2
/u–2

u– π
 , (4) 

 

where Na is the total number density of molecules at the 

level a, u
–

 is the average velocity of a molecule. 

The field E(z, t) is calculated from the Maxwell 
equation 

 

– 
∂2E

∂z2  + 
1

c2 
∂2E

∂t 2
 = – 

4π
c2 

∂2P

∂t 2
 . (5) 

 

The medium polarizability P is given by 
 

P(z, t) = ⌡⌠
–∞

+∞

 μ–(z, νz, t) dνz ; (6) 

 

μ–(z, νz, t) = μab[ρba(z, νz, t) + ρab(z, νz, t)] . (7) 
 

It should be noted that the field E(z′, t) in Eqs. (1)–
(3), in accordance with Ref. 2, is defined in a coordinate 
system connected with a molecule, while Eq. (5) defines the 
field in a laboratory system of coordinates. Connection 
between the fields in these two systems is performed with 

the nonrelativistic (νz/c � 1) transformation 

 
z′ = z – νz t ;  
 
Ω′ = Ω – k νz ; (8) 

 
k′ = k ,  t′ = t . 
 

In practice, the calculations should be done as follows. 
First, one sets some approach to the field E(z′, t) and then 
the corresponding approach, for example, for ρab(z′, Ω′, t) is 
found from the system of equations (1)–(3). After that 
transformation (8) is carried out, the result is substituted 
into Eqs. (5)–(7), and the subsequent iteration of E(z, t) is 
found.  

As a matter of fact, this procedure is very simple 
because transformation (8) keeps complete phase of the 
field, so Ω′t – kz′ = Ωt – kz. 

Let us represent E(z′, t), ρab(z′, t), and P(z, t) in the 

forms 
 

E(z′, t) = 
1
2 E0(z′, t) exp[i(Ω′t – kz′)] + 

 

+ 
1
2 E0

*(z′, t) exp[– i(Ω′t – kz′)] ; (9) 

 

ρab(z′, t) = r~ab(z′, t) exp[– i(Ω′t – kz′)] ; (10) 

 

P(z, t)=
1
2P0(z, t) exp[i(Ω t–kz′)]+

1
2P0

*(z, t)exp[–i(Ωt–z)];(11) 
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P0(z, t) = 2μab ⌡⌠
–∞

+∞

 ρ~ba(z′ → z – νz t, Ω′ → Ω – k νz, t)dνz. (12) 

 

For the envelopes E0(z′, t) and ab(z′, t) by substituting 

Eqs. (9) and (10) into Eqs. (1)–(3) and using the rotational 
wave approximation one obtains the following equations: 
 

ρ
∼⋅
ba = (– iΔ – 1/T2) ρ

~
ba – i 

μab

2h–
 E0 n ; (13) 

 

n⋅  = 
n0 – n

T1
 + i 

μab

h–
 (E0 ρ

~
ab – E0

* ρ~ba) ; (14) 

 

Δ = Ω′ – ω0 ;  n = ρbb – ρaa ;  n0 = nb – na . 
 

The shortened Maxwell equations for the envelopes can be 
written in the form 
 

∂E0

∂z  + 
1
c 
∂E0

∂t  = 2π i k P0 , (15) 

 

where P0 is defined by formula (12). 

If the real and imaginary parts of E0 and P0 are 

separated out 
 

E0 = Ε0 + Εc + i Εs , (16) 
 

P0 = Pc + i Ps (17) 
 

it can be shown that Eqs. (15) are valid if the following 
unequalities: 

 

∂2Ec

∂z2  � 2 k 
∂Es

∂z  ;  
∂2Pc

∂t 2
 � 2Ω 

∂Ps

∂t  ; 

 (18) 

∂2Es

∂t 2
 � 2Ω 

∂Ec

∂t  ;  
∂Ps

∂t  � 
Ω
2 Pc   

 

hold. 
The same unequalities should be added to the 

foregoing but with the substitutions 
 

Pc ↔ Ps ,  Ec ↔ Es . 
 

Below we shall consider propagation of a Gaussian 
optical pulse with the envelope 

E0(z, t) = Π exp
⎣
⎡

⎦
⎤– 

4(t – z/c)2

τp 
2   

 

through a medium occupying the space to the positive 
direction of the z axis. 
The initial and boundary conditions are 

 

E(z, – ∞) = 0 ; 
 

E(0, t) = Π exp
⎝
⎛

⎠
⎞– 

4 t 2

τp 
2  cosΩ t . 

 
Here τp is the pulse duration measured at the level e–1. 

Let us introduce the dimensionless variables 
 

τ = 
t – z/c

τp
 ;  x = z/cτp  

and the dimensionless functions  
 

N = n/n0 ;  R = ρ~ba/n0 ;  Z = E0/Π . (19) 
 

In this set of the variables the system of equations (13)–
(15) takes the form  

∂R
∂t  + (iλ1 + λ2) R = – i 

λ3

2  ZN ; 

 

∂N
∂t  + λ4 (N – 1) = iλ3 (ZR* – Z*R) ; 

 

∂Z
∂x = – iλ5 ⌡⌠

–∞

+∞

 exp(– νz
2/u–2) Rdνz (20) 

with the dimensionless parameters  
 

λ1 = Δτp ,  λ2 = τp/T2 ,  λ3 = ΩR τp , 
 

λ4 = τp/T1 ,  λ5 = 
4π k c τp μab (Nb – Na)

u– π P
 (21) 

 

and under the initial and boundary conditions 
 

τ = –∞: N0 = 1 , R0 = 0 , Z0 = 0 , x = 0: Z0 = exp(– 4τ 2) . 
 

In Eq. (21) the value ΩR is the Rabi frequency defined as  
 

ΩR = 
μab P

h–
 . 

 

As follows from Eq. (20), at small values of λ3 the optical 

pulse shows only negligible influence on a system of two–
level molecules. Let us make the assumption that 
 

λ3 � 1 (22) 
 

and write the sought–for solution in the form 
 

R = ∑
m=0

∞

 λ3
m Rm ;  N = ∑

n=0

∞

 λ3
n Nn ;  Z = ∑

k=0

∞

 λ3
k Zk . (23) 

 

Condition (22) by virtue of Eqs. (21) is reduced to the 
limitation on the pulse duration 
 

τp � Ω R 
–1 = h–/ μab Π. (24) 

 

Substitution of Eqs. (23) into the system of equations (20) 
gives the solutions in the first approach with respect to λ3  
 

R = λ3 R1 ,  N = 1 ,  Z = Z0 + λ3 Z1 ; 
 

R1 = – 
i
2 exp[– (iλ1 + λ2)τ] ⌡⌠

–∞

∞

 exp[– 4y2 + (iλ1 + λ2) y] dy ; 

 

Z1 = – 
π

2  u– λ5 Z0 × 

 

× 
⌡⎮
⌠

0

∞

 

 
exp⎣

⎡
⎦
⎤– ⎝

⎛
⎠
⎞4 + 

k2 u2 τp 
2

4 y2 – (λ2 – 8τ + iΔ1τp)y  dyx ; 

 

Δ1 = Ω – ω0 . (25) 
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From Eqs. (19) and (26) by passing from the 
dimensionless coordinate x to z one obtains, 

 

E0(z, τ) = Π exp(– 4τ 2) (1 – K z) ; (26) 
 

K = 
π u

2 c τp
 λ3λ5 ⌡⎮

⌠

0

∞

 

 
exp⎣

⎡
– ⎝
⎛

⎠
⎞

4 + 
k2 u–2 τp 

2

4 y2 – 

 

– 
⎦
⎤(λ2

 
–

 
8τ + iΔ1τp) y  dy = K1 – i K2  

 

for the slow amplitude of the field E0(z, τ). 
From Eqs. (16) and (26) it follows that 
 

Ec = – Π exp(– 4τ 2)K1z ;  Es = Π exp(– 4τ 2) K2 z ; (27) 

 

K1 = 
π u

2 c τp
 λ3 λ5 × 

 

× 
⌡⎮
⌠

0

∞

 

 
exp⎣

⎡
⎦
⎤

– ⎝
⎛

⎠
⎞

4 + 
k2 u–2 τp 

2

4 y2 – (λ2 – 8τ) y  cosΔ1τp ydy ;  

 

K2 = 
π u

2 c τp
 λ3 λ5 × 

 

× 
⌡⎮
⌠

0

∞

 

 
exp⎣

⎡
⎦
⎤

– ⎝
⎛

⎠
⎞

4 + 
k2 u–2 τp 

2

4 y2 – (λ2 – 8τ) y  sinΔ1τp ydy .  

 

Let us calculate the optical pulse intensity, using the 
relation 

J = 
c
4π 

1
2T ⌡⌠

–T

+T

 
 ⏐E⏐2dt = 

c
8π [(E

0 + Ec)
2 + Es

2] . (28) 

 

By substituting relations (27) into relation (28) and taking 
only linear, with respect to J0, terms one obtains 

 

J =
 
J0(1 – 2K1 z) , (29) 

 

where J0 = 
cΠ2

8π  exp(– 8τ 2) is the intensity of a Gaussian 

pulse incident on a medium. 
For the case of a weak absorption considered here 

Bouguer's law takes the form 
 
J = J0exp(– χ z) g (1 – χ z) . (30) 

 
From comparison of Eqs. (29) and (30) for the 

absorption coefficient, one obtains 
 

χ = 
π u

c τp
 λ3λ5 × 

 

× 
⌡⎮
⌠

0

∞

 

 
exp⎣

⎡
⎦
⎤

– ⎝
⎛

⎠
⎞

4 + 
k2 u–2 τp 

2

4 y2 – (λ2 – 8τ) y  cosΔ1τp ydy . (31) 

 

By changing the variables ⎝
⎛

⎠
⎞

4 + 
k2 u–2 τp 

2

4 y = ξ and 

substituting the explicit relations for λ3 and λ5 from 

Eq. (21) one finds that 
 

χ = 
8π2 Ω μab

2  (Nb – Na)τp

hc 4 + 
k2 u–2 τp 

2

4

 × 

 

×

⌡
⎮
⎮
⌠

0

∞

 

 

exp

⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞–ξ2 –

λ2 – 8τ

4+
k2 u–2 τp 

2

4

 ξ cos
Δ1τpξ

4+
k2 u–2 τp 

2

4

 dξ.      (32) 

 

Let us now take into account the fact that in derivation 
of the Bloch equations (1)–(3) (see Ref. 2) it was assumed 
that the field E(z, t) is linearly polarized along the x axis. 
That means that E(z, t) = Ex(z, t) and μ = μx,. We can write 

for the matrix element of the dipole moment that  
 

μab = (μx)ab = e⋅µab = ⏐μab⏐cosθ , 
 

where e is the unit vector along the x axis, μ is the vector 
of a dipole moment. Since molecules in a gas have random 
orientations, the value (μx)

2 
ab in Eq. (32) should be averaged 

over the angle θ that gives1 
 

(μx)ab
2  = 

1
3 ⏐μab⏐

2 . 

 

The structure of the absorption coefficient in the form 
of Eq. (32) allows one to draw a conclusion about 
nonstationarity of the absorption process for any limited 
pulse durations. The limit of Eq. (32) as τp → ∞ gives 

 

χ
∞
 = 

8π2 Ω ⏐μab⏐
2 (Nb – Na)

3 h c  
2

ku–
 
⌡
⌠

0

∞

 

 
exp

⎝
⎛

⎠
⎞– ξ2 – 

2T 2  –1

ku–
 ξ × 

 

× cos 
2(Ω – ω0)

ku–
 ξdξ . (33) 

 

This relation corresponds to the Voight profile.3 In a 

limiting case of T–1
2 /ku– . 1 from Eq. (33) one obtains the 

dispersion contour 
 

χL = 
S
π 

γL
(Ω – ω0)

2 + γL 
2 (34) 

with the line intensity  
 

S = 
8π3

3 h c ω0 ⏐μab⏐
2 (Nb – Na) (35) 

 

and halfwidth  
 

γL = 
1

2πT2
 . (36) 

 

In so doing in Eq. (35) the substitution Ω → ω0 was made, 

permitting to refer S to as the fundamental characteristic of  
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any transition. Really, this does not distort the frequency 
dependence due to narrow spectral lines. 

The other limiting case, when T –1
2 /ku � 1 in 

Eq. (33), corresponds to the Doppler line shape 
 

χD = 
2S

πγD
 exp

⎣
⎡

⎦
⎤– 

(Ω – ω0)
2

γD
2  , (37) 

 

where S is defined by formula (35), 
 

γD = ku– = 
Ω
c  u– g 

ω0

c  u– ,  u– = 2⎝
⎛

⎠
⎞2 ln2 kB T

M

1/2

 , 

 

kB is the Boltzmann constant and M is the molecular mass, so  

 

γD = ω0 ⎝
⎛

⎠
⎞2 ln2 kB T

M

1/2

 . (38) 

 

The condition τp → ∞ is too indefinite for estimates. As 

follows from Eq. (32) the absorption can be considered 
stationary in the following cases:  

(a) ku–τp � 1 ;  τp/T2 . 1 . 

 
This case corresponds to a negligibly small Doppler 

width γD = ku provided that τp . T2 and 

 

(b) ku–τp . 1 . 

In the case of τp . 
1

ku–
 and the line shape defined by 

the relation T –1
2 /ku–. 

In the case of nonstationary absorption we have  

τp � 
1

ku–
 and τp � 

1
T2

. 

In the latter case of extremely short pulse durations 
one should verify fulfilment of conditions (18) by 
substituting there, for example, relations (27). 

In conclusion, let us present some estimates for a 
concrete laser system.4 Radiation of a ruby laser at the 
wavelength 634.383 nm coincides with the center of a water 
vapor absorption line with μab = 3.8⋅10–22 CGSE. The pulse 

of 1 J energy and duration 2⋅10–8 s collimated by a 
telescope to the value of divergence 2⋅10–4 rad provides the 
value of ΩR ∼ 6⋅106 s–1 in a volume at 1 km from the lidar. 

Therefore, λ3 = 0.12, and the process of absorption can be 

considered linear. For tropospheric conditions H2O line at 

694.383 nm has the Doppler width ku– ∼ 1.2⋅109 s–1 and ku–

 τ
π = 24 . 1. The transverse relaxation time T2 can be 

defined from the linewidth (∼ 0.1 cm–1) and is equal to 

5⋅10–11 s. Then, T –1
2 /ku– = 17 . 1 and the condition of 

stationarity of the propagation process corresponding to the 
above–mentioned point b is fulfilled. 
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