FORMATION OF THE LATERAL SHEAR INTERFEROGRAMS WITH DIFFUSELY SCATTERED LIGHT FIELDS BASED ON THREEEXPOSURE RECORDING OF A LENS FOURIER HOLOGRAM

V.G. Gusev
V.V. Kuibyshev State University, Tomsk
Received June 17, 1992

Abstract

A shear interferometer is analyzed based on three-exposure recording of a lens Fourier hologram of a mat screen. It is shown that the spatial filtering in the hologram plane enables checking of wave aberrations of a lens or objective over the field to be done.

In the classical interferometry it is shown that a three-beam interferogram formed with diffraction gratings ${ }^{1}$ with shifted wave fronts gives rise to moire bands the equation for which has a power by two units lower than that of a polynomial of wave aberrations. This makes it possible to readily and accurately find the coefficients specifying wave aberrations. ${ }^{2}$ A method for obtaining three-exposure interferograms with moire bands to check the wave front is described based on three-exposure recordings of Fresnel holograms of a mat screen when it is illuminated with radiation with a quasiplanar wave front by superimposing the objective speckle-fields corresponding to the three exposures.

This paper considers the method of three-exposure recording of a lens Fourier hologram of a mat screen for checking wave aberration of a converging lens or an objective over the field.

According to Fig. $1 a$ the mat screen 1 which lies in the plane $\left(x_{1}, y_{1}\right)$ is illuminated by radiation with an aberrationless diverging spherical wave of the radius of curvature R which is formed with the lens L_{0} and a circular point hole p_{0} in the mat screen at its focus. In the plane $\left(x_{2}, y_{2}\right)$ of the photographic plate 2 the Fourier transform of a mat screen is formed with the lens L_{1} located immediately behind the mat screen when the condition ${ }^{4} R=f_{1} l /\left(l-f_{1}\right)$ is fulfilled. Here f_{1} is the focal length of a lens L_{1} under control and l is the distance between the planes $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$. In the plane of the photographic plate the recording of the Fourier hologram takes place during the first exposure using a diverging spherical reference wave of a radius of curvature $r=l$. Prior to the second exposure the mat screen and the lens L_{r} attached to the same shifting mechanism are displaced in the direction perpendicular to the optical axis, e.g., along the x axis by amount a. Prior to the third exposure they are displaced symmetrically to the optical axis by the same amount. At the reconstruction stage the hologram is illuminated with a small-aperture laser beam (Fig. 1b) at an angle $\theta=\arctan b / l$ with respect to the normal to the plane of the photographic plate, where b is the distance from the optical axis to the focal point of the lens L_{r} (Fig. 1a). An interference pattern is recorded in the focal plane $\left(x_{3}, y_{3}\right)$ of the lens L_{2} with focal length f_{2}.

FIG. 1. The scheme for recording (a) and reconstructing (b) a three-exposure lens Fourier hologram: 1) mat screen; 2) photographic plate-hologram; 3) recording plane of the interference pattern; L_{0}, L_{r}, L_{1}, and L_{2} are lenses; p_{0} is a spatial filter; and p_{1} is aperture diaphragm.

Based on Ref. 4 the complex amplitudes of fields reconstructed in the plane $\left(x_{2}, y_{2}\right)$ at three exposures within a laser beam aperture characterized by the function $P_{2}\left(x_{2}, y_{2}\right)$ (see Ref. 5) can be represented as
$u_{0}\left(x_{2}, y_{2}\right) \sim p_{2}\left(x_{2}, y_{2}\right)\left\{F\left[k x_{2} / l, k y_{2} / l\right] \otimes P_{1}\left(x_{2}, y_{2}\right)\right\}$,
$u_{1,2}\left(x_{2}, y_{2}\right) \sim p_{2}\left(x_{2}, y_{2}\right)\left\{F\left[k x_{2} / l, k y_{2} / l\right] \otimes \exp \left(\mp i k a x_{2} / l\right) P_{1}\left(x_{2}, y_{2}\right)\right\}$.

Here \otimes is the symbol of convolution operation, k is the wave number,
$F\left[k x_{2} / l, k y_{2} / l\right]=\int_{-\infty}^{\infty} \int t\left(x_{1}, y_{1}\right) \exp \left[-i k\left(x_{1} x_{2}+y_{1} y_{2}\right) / l\right] \times \mathrm{d} x_{1} \mathrm{~d} y_{1}$
is the Fourier transform of the complex amplitude of the mat screen transmittance $t\left(x_{1}, y_{1}\right)$ which is a random function of coordinates, $P_{1}\left(x_{2}, y_{2}\right)=\int^{\infty} \int p_{1}\left(x_{1}, y_{1}\right) \exp \left[i \varphi\left(x_{1}, y_{1}\right) \times\right.$
$\times \exp \left[-i k\left(x_{1} x_{2}+y_{1} y_{2}\right) / l\right] \mathrm{d} x_{1} \mathrm{~d} y_{1}$ is the Fourier transform of the generalized pupil function $p_{1}\left(x_{1}, y_{1}\right) \exp i \varphi\left(x_{1}, y_{1}\right)$ of the lens L_{1} under control (Fig. 1a) which takes into account its axial wave aberrations.

When deriving relations (1) and (2) it was assumed that the hologram is reconstructed at a point lying on the optical axis. Then in the range of spatial filtering the subjective speckle-fields of three exposures represented by relations (1) and (2) with corresponding angles between them, coincide. Moreover, the information about phase distortions produced in the light wave by a lens L_{1} under control (Fig. 1a) is contained within an individual subjective speckle in the hologram plane. The amplitudephase distribution of the field within this speckle is a result of the diffraction of a plane wave propagating along the optical axis on the pupil of the lens L_{1}.

When the Fourier transform is performed with the lens L_{2} (Fig. 1b) the diffraction field in the plane $\left(x_{3}, y_{3}\right)$ is
$u\left(x_{3}, y_{3}\right) \sim\left\{t\left(-\mu x_{3},-\mu y_{3}\right)\left[p_{1}\left(-\mu x_{3},-\mu y_{3}\right) \times\right.\right.$
$\times \exp i \varphi\left(-\mu x_{3},-\mu y_{3}\right)+p_{1}\left(-\mu x_{3}-a,-\mu y_{3}\right) \times$
$\times \exp i \varphi\left(-\mu x_{3}-a,-\mu y_{3}\right)+p_{1}\left(-\mu x_{3}+a,-\mu y_{3}\right) \times$
$\left.\left.\times \exp i \varphi\left(-\mu x_{3}+a,-\mu y_{3}\right)\right]\right\} \otimes P_{2}\left(x_{3}, y_{3}\right)$,
where $\mu=l / f_{2}$;
$P_{2}\left(x_{3}, y_{3}\right)=\int_{-\infty}^{\infty} \int p_{2}\left(x_{2}, y_{2}\right) \times \exp \left[-i k\left(x_{2} x_{3}+y_{2} y_{3}\right) / f_{2}\right] \mathrm{d} x_{2} \mathrm{~d} y_{2}$ in the range, where images of the pupil of the lens L_{1} overlap, is a superposition of the identical speckle-fields of three exposures. And the superposition of correlating speckle-fields results in the distribution of illumination
$I\left(x_{3}, y_{3}\right) \sim\left\{1+4 \cos \left[\varphi\left(-\mu x_{3},-\mu y_{3}\right)-\right.\right.$
$\left.-\frac{\varphi\left(-\mu x_{3}+a,-\mu y_{3}\right)+\varphi\left(-\mu x_{3}-a,-\mu y_{3}\right)}{2}\right] \times$
$\times \cos \left[\frac{\varphi\left(-\mu x_{3}+a,-\mu y_{3}\right)-\varphi\left(-\mu x_{3}-a,-\mu y_{3}\right)}{2}\right]+$
$\left.+4 \cos ^{2}\left[\frac{\varphi\left(-\mu x_{3}+a,-\mu y_{3}\right)-\varphi\left(-\mu x_{3}-a,-\mu y_{3}\right)}{2}\right]\right\} \times$
$\times\left|t\left(-\mu x_{3},-\mu y_{3}\right) \otimes P_{2}\left(x_{3}, y_{3}\right)\right|^{2}$.
Expression (4) describes a speckle-structure modulated by interference fringes of the lateral shear. The points of intersection of their maxima form the moire bands. If one neglects the scaling transformation for the first-order spherical aberrations, the equation describing the system of moire bands takes the form $\left[\partial^{2} \varphi\left(x_{3}, y_{3}\right) / \partial x_{3}^{2}\right] a=A\left(12 x^{2}+y^{2}\right) a=n \lambda$, where A is the coefficient of spherical aberration, n is the order of the interference band, and λ is the wavelength of a coherent light used for recording and reconstructing a hologram. This equation is quadratic and the shape of bands is a system of ellipses with the ratio of large to small axes equal to $\sqrt{3}$. Their large axes are parallel with the y axis.

When the hologram is displaced with respect to a small-aperture laser beam which reconstructs it along the direction of the shift axis the amplitude-phase distribution of the field within the subjective speckle in the vicinity of a point with coordinates $x_{2}, y_{2}=0$ is a result of diffraction of a plane wave propagating at an angle x_{2} / l with respect to the optical axis on the pupil of the lens L_{1}. Hence, an off-optical axis spatial filtration results in an interference pattern which specifies a combination of a spherical aberration and a coma. The equation describing the system of moire bands in this case takes the form $\mathrm{A}\left(12 x_{3}^{2}+4 y_{3}^{2}\right) a+6 B \xi x_{3} a=n \lambda$, where $\xi=x_{2} / \lambda l$ is the spatial frequency and B is the coefficient of the off-axis aberration of the coma type. The shape of moire bands also represents a system of ellipses but the position of their center is displaced along the shift axis by a value that depends on B, coordinate of a point, where the hologram is reconstructed, and on the value a of the shift.

In the experiment, required illumination was produced by a $\mathrm{He}-\mathrm{Ne}$ laser at a wavelength of $0.63 \mu \mathrm{~m}$. The threeexposure Fourier hologram of the mat screen was recorded using a lens with 90 mm focal length and 52 mm diameter for $R=145 \mathrm{~mm}, l=240 \mathrm{~mm}$, and $a=0.6 \pm 0.002 \mathrm{~mm}$. The accuracy Δa of the shift prior to the exposures satisfied the condition $\Delta a \leq \lambda l / d$ which follows from the requirement that the wave phase change within the pupil of the lens under control be not larger than π.

Depicted in Fig. 2 is a three-exposure shear interferogram recorded during spatial filtering on the optical axis performed by reconstructing the hologram using a smallaperture ($\approx 2 \mathrm{~mm}$ in diameter) laser beam. The interference pattern characterizes the axis aberrations of a lens under control. The shear interferogram shown in Fig. $2 b$ is related to the case of the hologram reconstruction at a point lying 8 mm aside from the optical axis. The moire bands describe a combination of a spherical aberration and a coma.

FIG. 2. Shear interferograms recorded during spatial filtering in the plane of the hologram: a) on the optical axis and b) off the optical axis.

Thus the three-exposure recording of a lens Fourier hologram of a mat screen results in the formation of moire bands which characterize the wave aberrations of a lens under control. Spatial filtration enables one to separate out the interference patterns corresponding to both spherical aberration and a combination of spherical and off-axis wave aberrations of the coma type. It should be noted that the three-exposure recording of the hologram based on superimposing of the subjective speckle of three exposures can be accomplished by displacing a mat screen and a lens under control with the help of one and the same mechanism ${ }^{6}$ or by displacing the mat screen and the photographic plate. ${ }^{7}$

REFERENCES

1. V.A. Komissaruk, Opt. Spektrosk. 16, No. 6, 1054-1060 (1964).
2. V.A. Komissaruk, Opt.-Mekh. Prom-st', No. 3, 10-13 (1970).
3. V.G. Gusev, Opt. Spektrosk. 69, No. 4, 915-917 (1990).
4. V.G. Gusev, Atmos. and Oceanic Opt. 5, No. 2, 73-79 (1992).
5. M. Born and E. Wolf, Principles of Optics (Pergamon Press, N.Y., 1959).
6. V.G. Gusev, Opt.-Mekh. Prom-st', No. 4, 3-7 (1992).
7. V.G. Gusev, Atmos. and Oceanic Opt. 5, No. 4, 219-225 (1992).
