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A shear interferometer is analyzed based on three–exposure recording of a lens 

Fourier hologram of a mat screen. It is shown that the spatial filtering in the 
hologram plane enables checking of wave aberrations of a lens or objective over the 
field to be done. 

 
In the classical interferometry it is shown that a 

three–beam interferogram formed with diffraction 
gratings1 with shifted wave fronts gives rise to moire 
bands the equation for which has a power by two units 
lower than that of a polynomial of wave aberrations. This 
makes it possible to readily and accurately find the 
coefficients specifying wave aberrations.2 A method for 
obtaining three–exposure interferograms with moire 
bands to check the wave front is described based on 
three–exposure recordings of Fresnel holograms of a mat 
screen when it is illuminated with radiation with a 
quasiplanar wave front by superimposing the objective 
speckle–fields corresponding to the three exposures. 

This paper considers the method of three–exposure 
recording of a lens Fourier hologram of a mat screen for 
checking wave aberration of a converging lens or an 
objective over the field. 

According to Fig. 1a the mat screen 1 which lies in 
the plane (x

1
, y

1
) is illuminated by radiation with an 

aberrationless diverging spherical wave of the radius of 
curvature R which is formed with the lens L

0
 and a 

circular point hole p
0
 in the mat screen at its focus. In 

the plane (x
2
, y

2
) of the photographic plate 2 the Fourier 

transform of a mat screen is formed with the lens L
1
 

located immediately behind the mat screen when the 
condition4 R = f

1
l/(l – f

1
) is fulfilled. Here f

1
 is the 

focal length of a lens L
1
 under control and l is the 

distance between the planes (x
1
, y

1
) and (x

2
, y

2
). In the 

plane of the photographic plate the recording of the 
Fourier hologram takes place during the first exposure 
using a diverging spherical reference wave of a radius of 
curvature r = l. Prior to the second exposure the mat 
screen and the lens L

r
 attached to the same shifting 

mechanism are displaced in the direction perpendicular to 
the optical axis, e.g., along the x axis by amount a. Prior 
to the third exposure they are displaced symmetrically to 
the optical axis by the same amount. At the 
reconstruction stage the hologram is illuminated with a 
small–aperture laser beam (Fig. 1b) at an angle 
θ = arctan b/l with respect to the normal to the plane of 
the photographic plate, where b is the distance from the 
optical axis to the focal point of the lens L

r
 (Fig. 1a). An 

interference pattern is recorded in the focal plane (x
3
, y

3
) 

of the lens L
2
 with focal length f

2
. 

 

 
 

FIG. 1. The scheme for recording (a) and reconstructing 
(b) a three–exposure lens Fourier hologram: 1) mat 
screen; 2) photographic plate–hologram; 3) recording 
plane of the interference pattern; L

0
, L

r
 , L

1
, and L

2
 are 

lenses; p
0
 is a spatial filter; and p

1
 is aperture diaphragm. 

 
Based on Ref. 4 the complex amplitudes of fields 

reconstructed in the plane (x
2
, y

2
) at three exposures within 

a laser beam aperture characterized by the function 
P

2
(x

2
, y

2
) (see Ref. 5) can be represented as 

 

u
0
(x

2
, y

2
) ∼ p

2
(x

2
, y

2
) {F[kx

2
/l, ky

2
/l]⊗P

1
(x

2
, y

2
)} , (1) 

 

u
1,2

(x
2
,y

2
)∼p

2
(x

2
,y

2
){F[kx

2
/l, ky

2
/l]⊗exp(å ikax

2
/l)P

1
(x

2
,y

2
)}.    

 (2) 
 

Here ⊗ is the symbol of convolution operation, k is the wave 
number,  
 

F[kx
2
/l,ky

2
/l]=⌡⌠

 –∞

  ∞
 
 ⌡⌠

 

 

t(x
1
,y

1
)exp[– ik(x

1 
x
2
+y

1 
y
2
)/l]×dx

1
dy

1
 

 

is the Fourier transform of the complex amplitude of the mat 
screen transmittance t(x

1
, y

1
) which is a random function of 

coordinates, P
1
(x

2
, y

2
) =⌡⌠

 –∞

  ∞
 
 ⌡⌠

 

 

p
1
(x

1
, y

1
) exp[ iϕ(x

1
, y

1
) ×  

× exp[– ik(x
1 
x
2
 + y

1 
y
2
)/l] dx

1
dy

1
 is the Fourier transform 

of the generalized pupil function p
1
(x

1
, y

1
) exp iϕ (x

1
, y

1
) of 

the lens L
1
 under control (Fig. 1a) which takes into account 

its axial wave aberrations. 
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When deriving relations (1) and (2) it was assumed 
that the hologram is reconstructed at a point lying on the 
optical axis. Then in the range of spatial filtering the 
subjective speckle–fields of three exposures represented by 
relations (1) and (2) with corresponding angles between 
them, coincide. Moreover, the information about phase 
distortions produced in the light wave by a lens L

1
 under 

control (Fig. 1a) is contained within an individual 
subjective speckle in the hologram plane. The amplitude–
phase distribution of the field within this speckle is a result 
of the diffraction of a plane wave propagating along the 
optical axis on the pupil of the lens L

1
. 

When the Fourier transform is performed with the lens 
L

2
 (Fig. 1b) the diffraction field in the plane (x

3
, y

3
) is 

 

u(x
3
, y

3
) ∼ {t(– μ x

3
, – μ y

3
) [ p

1
(– μ x

3
, – μ y

3
) × 

 
× exp iϕ(– μ x

3
, – μ y

3
) + p

1
(– μ x

3
 – a, – μ y

3
) × 

 
× exp iϕ(– μ x

3
 – a, – μ y

3
) + p

1
(– μ x

3
 + a, – μ y

3
) × 

 

× exp iϕ(– μ x
3
 + a, – μ y

3
)]}⊗P

2
(x

3
, y

3
)
 
, (3) 

 
where μ = l/f

2
;  

P
2
(x

3
,y

3
)=⌡⌠

 –∞

  ∞
 
 ⌡⌠
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2
, y

2
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2
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3
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2
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3
)/f

2
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2
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2
 

in the range, where images of the pupil of the lens L
1
 

overlap, is a superposition of the identical speckle–fields of 

three exposures. And the superposition of correlating 

speckle–fields results in the distribution of illumination 
 

I(x
3
, y

3
) ∼ 

⎩
⎨
⎧
1 + 4cos 

⎣
⎡ϕ(– μ x

3
,
 
– μ y

3
)
 
– 

 

⎦
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3
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3
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3
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3
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Expression (4) describes a speckle–structure 

modulated by interference fringes of the lateral shear. The 
points of intersection of their maxima form the moire 
bands. If one neglects the scaling transformation for the 
first–order spherical aberrations, the equation describing 
the system of moire bands takes the form 

[∂2ϕ(x
3
, y

3
)/∂x

3
 
2]a = A(12 x2 + y2)a = nλ, where A is 

the coefficient of spherical aberration, n is the order of 
the interference band, and λ is the wavelength of a coherent 
light used for recording and reconstructing a hologram. This 
equation is quadratic and the shape of bands is a system of 

ellipses with the ratio of large to small axes equal to 3. Their 
large axes are parallel with the y axis. 

 

When the hologram is displaced with respect to a 
small–aperture laser beam which reconstructs it along the 
direction of the shift axis the amplitude–phase distribution 
of the field within the subjective speckle in the vicinity of a 
point with coordinates x

2
, y

2
 = 0 is a result of diffraction of 

a plane wave propagating at an angle x
2
/l with respect to the 

optical axis on the pupil of the lens L
1
. Hence, an off–optical 

axis spatial filtration results in an interference pattern which 
specifies a combination of a spherical aberration and a coma. 
The equation describing the system of moire bands in this case 
takes the form A(12 x

3
 
2
 + 4 y

3
 
2)a + 6 Bξx

3
 a = nλ, where 

ξ = x
2
/λl is the spatial frequency and B is the coefficient of 

the off–axis aberration of the coma type. The shape of 
moire bands also represents a system of ellipses but the 
position of their center is displaced along the shift axis by a 
value that depends on B, coordinate of a point, where the 
hologram is reconstructed, and on the value a of the shift. 

In the experiment, required illumination was produced 
by a He–Ne laser at a wavelength of 0.63 μm. The three–
exposure Fourier hologram of the mat screen was recorded 
using a lens with 90 mm focal length and 52 mm diameter 
for R = 145 mm, l = 240 mm, and a = 0.6±0.002 mm. The 
accuracy Δa of the shift prior to the exposures satisfied the 
condition Δa ≤ λl/d which follows from the requirement 
that the wave phase change within the pupil of the lens 
under control be not larger than π. 

Depicted in Fig. 2 is a three–exposure shear 
interferogram recorded during spatial filtering on the optical 
axis performed by reconstructing the hologram using a small–
aperture (≈ 2 mm in diameter) laser beam. The interference 
pattern characterizes the axis aberrations of a lens under 
control. The shear interferogram shown in Fig. 2b is related to 
the case of the hologram reconstruction at a point lying 8 mm 
aside from the optical axis. The moire bands describe a 
combination of a spherical aberration and a coma. 

 

 
 

FIG. 2. Shear interferograms recorded during spatial 
filtering in the plane of the hologram: a) on the optical 
axis and b) off the optical axis. 

 
Thus the three–exposure recording of a lens Fourier 

hologram of a mat screen results in the formation of moire 
bands which characterize the wave aberrations of a lens 
under control. Spatial filtration enables one to separate out 
the interference patterns corresponding to both spherical 
aberration and a combination of spherical and off–axis wave 
aberrations of the coma type. It should be noted that the 
three–exposure recording of the hologram based on 
superimposing of the subjective speckle of three exposures 
can be accomplished by displacing a mat screen and a lens 
under control with the help of one and the same 
mechanism6 or by displacing the mat screen and the 
photographic plate.7 
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