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Neglect of the finite absorption in the gap between the lines introduces the 
systematic error in lidar measurement of temperature by the three–frequency method 
of differential absorption. Working formulas for the estimate of the temperature from 
lidar returns that correct this error are derived and the order of magnitude of this 
correction is estimated. 

 
Introduction. The principle of lidar sensing of the 

temperature profile proposed by Mason1 and based on the 
temperature dependence of rotational levels of a chosen gas 
molecule was emboded in practical methods in a number of 
works, in particular, in Ref. 2. 

These methods do much better (including maximum 
sensing range, accuracy, and spatial and temporal 
resolutions for prescribed energy parameters) in comparison 
with the Raman–scattering methods because of larger 
interaction cross sections, but they impose heavy demands 
on the spectral characteristics of a transmitter and receiver, 
necessary a priori information, signal processing, and 
interpetation of the results of sensing. Depending on a 
chosen strategy of overcoming these difficulties, stemming 
from the levels of technical and informational support, one 
uses: bifrequency method3 which imposes less stringent 
requirements upon the transmitting system, three–frequency 
method2 capable of decreasing the number of the a priori 
assumptions and assigned parameters, four–frequency 
method capable of selecting the lines with optimal relation 
between their absorptions, and other modifications. 

The spatially resolved three–frequency method based 
on sensing at the wavelengths λ1 and λ2 lying at the centers 

of two absorption lines and at λ0 lying in the gap between 

the lines, in fact is based on a comparison of the estimates 
for one and same gas concentration by the method of 
differential absorption at the pairs of the wavelengths λ1 

and λ0 and λ2 and λ0. The classical working formula for the 

temperature estimate from lidar returns by the three–
frequency method2 was derived under the assumption that 
there is no absorption by a working gas at λ0. This 

introduces the systematic error which is of primary 
significance when one or two weak lines are used. The 
present paper eliminates this drawback.  

Equation for the temperature estimate. Let us 
introduce the following designations:  

P0 and T0 are the pressure and temperature at which 

the parameters of the absorption lines of the gas in use were 
measured;  

P and T are the real pressure and temperature in the 
examined layer of the atmosphere;  

σ0i is the absorption cross section of individual gas 

molecule at λi, P0, and T0 (i = 0, 1, 2); σi is the same but 

at P and T; Δσi = σi – σ0 (i = 1, 2);  

S0i is the line intensity at T0 (i = 1, 2); Si is the same 

but at T; 

E′′i  is the energy of the lower state of the transition 

from λi (i = 1, 2); ΔE′ = E′′
1 – E′′

2;  

γ0i is the halfwidth of the line at P0 and T0 (i = 1, 2); 

γi is the same but at P and T;  

Q(T) is the incomplete function;  
ni is the coefficient of temperature dependence of the 

line halfwidth; Δn = n1 – n2;  

M
~

i and τ~i are the estimates of the working gas 

concentration and double optical depth of differential 
absorption in the strobe at λi and λ0; the tilde denotes the 

estimate of the parameter from lidar returns;  
kB is Boltzmann's constant;  

j is the serial number of spatial strobes 
(j = 1, 2, 3, ...);  

αij and βij are the coefficients of elastic extinction and 

backscattering in the strobe (i =1, 2);  
n s

ij, nbg
ij , and nij are the numbers of single–electron 

pulses (SEP), dark–current background, and pulses in the 
temporal strobe Δt = 2L/c of lidar return signal. 

Having written down the estimates of the working gas 
concentration in the form 

 

M
~

i = τ~i /2LΔσi , i = 1, 2 , 

 
and having equated them, we obtain 
 

lnΔσ1 – lnΔσ2 = ln(τ~1/τ~2) . (1) 

 

Formulas for the estimates τ~i from lidar return signals are 

well known, in particular, in the photon counting regime of 
detection 
 

τ~ij = ln 
n~ s
ij n

~ s
0, j+1

n~ s
0j n

~ s
i, j+1

 + B – C , i = 1, 2, j = 1, 2, 3, ...,   

 
~n s

ij = nij – 
~nbg

ij , where ~nbg
ij  is the estimate of the number of 

the dark–current SEP in the corresponding strobe obtained 
by a priori calculations or by counting of the SEP in the 
time intervals between the lidar returns, 
 
B = ln(βi, j+1β0j/βijβ0, j+1) , C = 2 L (αij – α0j) .  
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Let us write down the left side of Eq. (1) in the form 
ln(σ1/σ2) + A , where 
 

A = ln
⎝
⎛

⎠
⎞1 – 

σ0

σ1
 – ln

⎝
⎛

⎠
⎞1 – 

σ0

σ2
 = ∑

k=1

∞

 
 

σ0 
κ

κ
 
⎝
⎛

⎠
⎞1

σ2 
κ
 – 

1

σ1 
κ

. (2) 

 

As is well known2, 
 

σi = 
Si

πγi
 ,   γi = γ0i 

P
P0

 ⎝
⎛

⎠
⎞T0

T

ni

 ,  

 

Si = S0i 
Q(T0)

Q(T)  exp
⎣
⎡

⎦
⎤E′

i

κB
 
⎝
⎛

⎠
⎞1

T0
 – 

1
T   

from which it follows that  
 

σi = σ0i 

Q(T0)P0

Q(T)P  
⎝
⎛

⎠
⎞T

T0

ni
 exp

⎣
⎡

⎦
⎤E′′

i

κB
 
⎝
⎛

⎠
⎞1

T0
 – 

1
T  , (3) 

 

where σ0i = S0i/πγ0i . Let us approximate Eqs. (2) and (3) 

making use of the fact that 
 

⏐ΔT⏐ = ⏐T – T0⏐ � T0 . 
 

By designating  
 

μ = Δn + 
E′′

κB T0
 ,  ν = μ T0⎝

⎛
⎠
⎞1

T0
 – 

1
T  , (4) 

we find 
 

σ1

σ2
 g 

σ01

σ02
 (1 + ν) ,  

 

1

σ2 
κ
 – 

1

σ1 
κ
 = 

1
2 ⎣
⎢
⎡

⎦
⎥
⎤1

σ2 
κ
 
⎝
⎜
⎛

⎠
⎟
⎞1 – 

σ2 
κ

σ1 
κ

 – 
1

σ1 
κ
 
⎝
⎜
⎛

⎠
⎟
⎞1 – 

σ1 
κ

σ 2 
κ

 | 

 

g 
1
2 ⎣
⎡

⎦
⎤1

σ02
κ  – 

1

σ01
k  – 

1

σ01
κ (1 + ν)κ

 + 
1

σ02
κ  (1 + ν)κ  . (5) 

 

By taking σ0 = σ00 and designating ρi = σ00/σ0i (i = 1, 2) 

and η = 1 + ν, we obtain 
 

A = 
1
2 [ln(1 – ρ1) – ln(1 – ρ2) + ln(1 – ρ1/η) – ln(1 – ρ2η)]. 

 

Then Eq. (1) for the estimate takes the form 
 

lnη + 
1
2 ln 

(1 – ρ1)(1 – ρ1/η)

(1 – ρ2)(1 – ρ2η)
 = lnξ ,  

 

where 
 
 

ξ = 

~τ1 σ02

~τ2 σ01

 , 

 

or after taking the antilogarithms,  
 

(1 – ρ1)η
2 – [(1 – ρ1) ρ1 – (1 – ρ2) ρ2 ξ

2] η – (1 – ρ2) ξ
2 = 0.(6) 

 

The solution of the equation for the estimate.  The 

solution of Eq. (6) ~η gives the estimate ~ν = ~η – 1 and by 
virtue of Eq. (4), the temperature estimate 
 

 

~
T = T0(1 – ~ν/μ)–1 . (7) 
 

In the zeroth approximation in σ00 (i.e., when ρ1 and ρ2 = 0) 

we obtain from Eq. (6) 
 

~ν(0) = ξ – 1, 
~
T(0) = T0 ( )1 – 

ξ – 1
μ

–1

 ,  

 

that for ⏐ν⏐ � 1, as could be expected, gives the relation 

 

~
T(0) = T0 ⎣

⎢
⎡

⎦
⎥
⎤

1 – 
ln(~τ1 σ02/

~τ2 σ01)

Δn + ΔE′′/κB T0

–1

 ,  ν � 1 ,  σ00 =0 , (8) 

 
which agrees with formula (5) of Ref. 2. On the other 

hand, for ν � 1 formula (5) gives the estimate 

 

~ν g 
(1 – ρ2)

2ξ2 – (1 – ρ1)
2

(1 – ρ1)(2 – ρ1) – (1 – ρ2)ρ2ξ
2 , ν � 1   

 
that for ρ1 and ρ2 = 0 gives Eq. (8) once again. In general 

the sought–for root of Eq. (6) is determined by the correct 
asymptote over ρ1 and ρ2 and is equal to 
 

~η = 
ρ1 – ρ2 g

2  + 
(ρ1 – ρ2g)2

4  + g , (9) 

where  

g = 
1 – ρ2

1 – ρ1
 ξ2 .  

 

In practice ρ1 and ρ2 are rather small and instead of Eq. (9) 

we may use the estimate in the first approximation in σ00 
 

~η(1) = ξ2 +ρ1(1 + ξ2)/2 – ρ2ξ
2 . (10) 

 
Relative correction. To detemine the contribution of 

the continuum absorption, we consider the relative 
correction for the temperature estimate 

 

δT = 

~
T – 

~
T(0)

~
T(0)

 
ξ=1+ν 

g 

~
T – 

~
T(0)

T0
 

ξ=1+ν 
= 

~ν – ~ν(0)

μ  
ξ=1+ν 

, 

taking into account that in accordance with Eq.
 
(4) 

ν g 
ΔT
T0

 μ .  

In the general case from Eq. (9) we obtain 
 

δT = 
1
μ ⎣
⎡

⎦
⎤ρ1 – ρ2 h

2  + 
(ρ1 – ρ2 h)2

4  + h  – 1 – ν  , (11) 

 
where  

h = 
1 – ρ2

1 – ρ1
 (1 + ν)2 .  

 

For clarity let us write down Eq. (11) in the first 
approximation σ00 

 

δ(1)
T

 = 
ΔT
T0

 ⎣
⎡

⎦
⎤ϕ + 

ρ1

2  (1 + ϕ2) – ρ2 ϕ
2  , 
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where  
 
ϕ = 1 + ν . 
 
For definitness we take ρ2 ≤ ρ1. It is obvious that for given 

ρ1 the quantity δ(1)
T

 is linearly dependent on θ = ρ2/ρ1 and 

takes the extremum values 
 

δ (1)

Tmin
max

 = 
ΔT
T0

 ⎣
⎡

⎦
⎤ϕ + 

ρ1

2  (1 ∓ ϕ2)    

 
 
for θ = 1 and 0, respectively, and the average value 
 

δ (1)

Tav
 = 

ΔT
T0

 ⎝
⎛

⎠
⎞ϕ + 

ρ1

2   

 
for θ = 1/2 .  
 

Conclusion. The derived simple working formulas (9) 
and (10) with the finite absorption in the gap between the 
lines taken into account correct the standard temperature 
estimate by the three–frequency method of differential 
absorption. The relative correction has the order of relative 
deviation of the real temperature from the reference one. Such 
a consideration, falling outside the scope of this paper, is 
necessary for the other methods of temperature measurement 
by differential absorption. 
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