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The processes of molecular emission and absorption of light in the upper layers of 
the atmosphere are discussed within the framework of modern semiclassical statistical 
electrodynamics.  

 

1. INTRODUCTION 
 

The equation of radiative transfer through a molecular 
medium  
 

k
0
grad J = – κ J + η (1) 

 

for the spectral intensity J of a beam at the frequency ω 
propagating along the direction of a unit vector k

0
 includes 

κ(ω) and η(ω), i.e., the absorption and emission coefficients. If 
 

η = B(ω, H)κ , (2) 
 

where B is the Planck function, Θ is the temperature we 
have the so–called local thermodynamic equilibrium.  

This paper concerns with the problem of κ, η, and 
Eq. (2) for the upper atmosphere. This analysis will remain 
unchanged if the light scattering is to be taken into account 
in Eq. (1).  

In Sec. 2 the derivation of Eq. (1) using the 
semiclassical statistical electrodynamics is reminded. A 
criticism of a widely recognized opinion about the cause of 
Eq. (2) violation in the upper atmosphere is given in Sec. 3. 
The peculiarities inherent in κ and η at small pressures are 
discussed in Secs. 4 and 5. Some conclusions are drawn in 
Sec. 6.  

The paper is written as a methodological (and to some 
extent authorized) review. Its aim is to attract attention to 
those aspects of the problem which differ the approach 
based on Maxwell's equations from the phenomenological 
one based on the "photon analogies". The question appears 
to be nontrivial when the radiative processes in the upper 
atmosphere are treated.  

 

2.
 

SEMICLASSICAL STATISTICAL ELECTRODYNAMICS 
 AND THE EMISSION COEFFICIENT  

 
Within the "optical version" (nonmagnetic dielectric) 

Maxwell's equations (for the electric field strength E(r, t) 
at a point r and at time t)  

 

rot rot E(r, t) + 
1

c2 
∂2E

∂t2
 + 

4π
c2  

∂2P

∂t2
 = 0 (3) 

 

involves the dipole moment of a unit volume P(r, t) and c 
is the speed of light. For reasons that will become clear in 
Sec. 4 it is worthwhile to study a medium with a spatial 
dispersion when the spectral component is  
 

P(r, ω) ≡ 
1
2π ⌡⌠

–∞

∞

 P(r, t) eixt dt = ⌡⌠ f(ω, r′) E(r – r′, ω) dr′ (4) 

 

with some function f(ω, r′); E(r, ω) is the spectral 
component of E(r, t). The relations  
 

P(r, ω) = 
ε(ω) – 1

4π  E(r, ω) , f(ω, r′) ∼ δ(r′) (5) 

 

demonstrate the passage from Eq. (4) to the conventional 
version with the dielectric constant ε(ω).  

In the phenomenological electrodynamics the function 
f (or the quantity ε) is announced to be an empirical 
value.1,2 The term "semiclassical electrodynamics" appears 
when the quantum mechanics is used for calculation of f 
(see, for example, Refs. 3–9), i.e.,  

 

P(r, t) = Tr ρ
∧
(t) P

∧
(r) ,  i� 

∂ρ
∧

∂t = H
∧
ρ
∧
 – ρ

∧
H
∧

 , 

 

H
∧

 = H
∧

0
 + H

∧
0R

 ,  H
∧

0R
 = – ∑

α

 e
α
r
α
E(r

α
, t) , (6) 

P
∧
(r) = ∑

α

 e
α
r
α
δ(r – r

α
) .

 
 

In Eqs. (6) ρ
∧
 is the density matrix of a system which is 

described by the Hamiltonian H
∧

0
 before the field switching, P

∧
 

is the dipole moment operator of a unit volume, and the 

Hamiltonian H
∧

0R
 that represents the energy of interaction 

between the system and the field, in the dipole approximation, 
includes the charges e

α
 of the particle α. The particle 

coordinate r
α
 is naturally considered to be the argument of the 

wave function. The first and the second relations of Eqs. (6) 
are common definition of a quantum average and the problem 
of a quantum system evolution in the electromagnetic field 
which is equivalent to the Schrödinger equation.  

The adjective "statistical" implies here the treatment of 
the spontaneous radiation as fluctuations of the equilibrium 
dipole moment. A detailed discussion of similar statement can 
be found in Refs. 1, 7–14, and, naturally, the quantum 
fluctuations' problem itself is a part of the quantum theory 
philosophy (see, for example, Ref. 15). The corresponding 
correlator in terms of Eqs. (6) has the form  

 

Π
x
 = Tr ρ

∧
 
1
2 (x

∧
x
∧
′(t) + x

∧
′(t)x

∧
) . (7) 

 

In Eq. (7) x
∧
 denotes the operator of some physical quantity 

and x
∧
′(t) = exp (– t/i�)H

∧
0
 x
∧
 exp(t/i�)H

∧
0
. The equilibrium 

situation is normally talked about if in Eq. (7) we have  
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ρ
∧
 → ρ

∧(0)
  (8) 

and ρ
∧(0) is the density matrix of the quantum system before 

switching on the field. In fact, Eq. (8) is the initial 
condition for Eq. (6), which is quite sufficient for 
calculating quantity (7), since the parameter of a series 
expansion over powers of the field5,6 (D is the matrix 
element of the dipole moment) is 
 

ξ = DE/(�β) � 1. (9) 

 

Actually, under conditions of the upper atmosphere β is 

either the Doppler linewidth γ
D
 or γ

D
γ
L
, where γ

L
 is the 

dispersion linewidth. For solar radiation the value E hardly 
reaches 10 W/cm.  

Simple qualitative considerations readily allow one to 
represent spontaneous radiation as a result of irregular 
motion of the dipole moment around its zeroth (in the 
absence of the field) mean (see Eq. (8)). The foregoing is 
also obvious from the formal point of view, i.e., the 
fluctuations δP(r, t) should be added to P, and the 
replacement of P + δP for P in Eq. (3) makes it be an 
nonhomogeneous equation. A particular solution of the 
latter equation (∼ δP) will just describe self–emission of a 
medium. To obtain Eq. (1) it is sufficient to use the energy 
conservation law in electrodynamics following from Eq. (3), 
to assume J to be the Poynting vector and to introduce the 
rays of geometrical optics. (The latter is undoubtly valid for 
the medium without light scattering). To this end taking 
into account Eq. (4) one obtains14  

η = 
4h–ω5

π2c4  

⌡
⎮
⎮
⌠

0

∞

dλλ2 Im Γ(ω, λ) Λ(ω, λ)

λ2 – 
ω2

c2 – 
4πω2

c2  Γ(ω, λ)
2 , (10) 

 

κ(ω) = 
4πω
c  Im Γ(ω, λ) ⎢

λ = ω/c
. (11) 

 

The function Γ(ω, λ) is the Fourier transform over r of 
the function f from Eq. (4), Λ(ω, λ) is the spatiotemporal 
spectrum of correlator (7) for δP. The quantities Γ and Λ 
depend on λ = |λ| in the case of an isotropic medium.  

The problem on Λ is solved with the aid of the 
fluctuation–dissipation theorem and now we shall only 
schematically remind its derivation.10–12, 16, 17  

Let a volume with a sufficiently large number of 
molecules be assumed "the system" in Eqs. (6). The 
solution of Eqs. (6) to the first order of the perturbation 
theory (unlike Eqs. (7) and (8) to the zeroth order P = 0) 
with respect to parameter (9) is well known from the 
textbooks on quantum mechanics (see, for example, 
Ref. 18). In this case we obtain for Γ the expression  

Γ(ω) ∼ ∑
a,b

 ⏐α
ab
⏐2 δ(ω – ω

ba
)(ρ

a
(0) – ρ

b
(0)) ≡

 ∑
a,b

 Γ
ab

(ω). Here a, 

⏐a>, and E
a
 are the quantum indices, eigen functions and 

eigenvalues of H
∧

0
; ω

ba
 = (E

b
 – E

a
)/�, ρ

a
(0) = <a⏐ρ

∧(0)⏐a> is 

the probability of the equilibrium state a (before switching on 

the field), x
ab

 = <a⏐x
∧
⏐b> and x

∧
 is the vector component of P

∧
. 

The δ–function is the mathematical consequence of the 

"golden" Fermi rule, and singularity is removed because ∑
a,b

  

is practically an integral if the number of molecules is large.  

The same technical procedures give for spectrum (7) the 

quantity ∼ ∑
a,b

 ⏐α
ab
⏐2

⋅δ(ω – ω
ba

)(ρ(0)
a

 + ρ(0)
b

). Now it can 

readily be shown that  
 

Λ = ∑
a, b

 
ρ
a
 + ρ

b

ρ
a
 – ρ

b

 Γ
ab

(ω) (12) 

 

which is just the general formulation of the fluctuation–
dissipation theorem.12 There is no problem to find the 
coefficients in the latter relations, they are taken into 
account in Eqs. (10) and (11) and are chosen to fit the 
equality in Eq. (12).  

In the case of thermodynamic equilibrium (or local 
equilibrium in the sense of Ref. 16), when  
 

ρ(0)= 
1
Z exp( – H

∧
0
/kΘ) , (13) 

 

where k is the Boltzmann constant, Z is the normalization 
factor obtained from the condition Tr ρ(0) = 1, the δ–
function in Γ

ab
 gives a possibility of rewriting Eq. (12) in 

the form  
 

Λ = 
1 + exp( – �ω/kΘ)

1 – exp( – �ω/kΘ)
 Γ(ω, λ) , (14) 

 
and in fact Eq. (14) is the most commonly used formulation 
of the theorem. Relations (14) and (11) show that it is 
sufficient for calculating the correlator of quantum 
fluctuations to have any information about the absorption 
coefficient, for example, empirical calculated in the binar 
approach, etc.  
 

ON THE BREAKING EQ. (2) IN THE UPPER 
ATMOSPHERE. A CRITICAL REVIEW  

 
There exists an opinion, when calculating η for the 

upper layers of the atmosphere, which comes evidently from 
Ref. 19 (see also Ref. 20) that relation (13) is not fulfilled 
under these conditions because rather rare collisions are 
unable to restore the equilibrium destroyed by radiation. It 
is a priori taken that just the vibrational (and electronic) 
states cannot relax to the state described by Eq. (13). A 
formal result of such an approach is the following 
expression:  

η = κB 
τ′ + τy
τ′ + τ  ,  y = 

⌡⌠ J(ω, k
0
) dω dk

0

4π ⌡⌠ k(ω) B(ω) dω

 , (15) 

 

where τ is named the vibrational collisional relaxation time 
and τ′ is the lifetime of a molecule in an excited state. It is 
understandable that as τ → 0 Eq. (15) takes the form of 
Eq. (2) that corresponds to the low layers of the 
atmosphere.  

The same concepts in a more refined mathematical 
performance were presented in Ref. 21 and the results were 
used for extensive calculations of the intensity.22–24 In 
Refs. 25 and 26 it was simply accepted that the vibrational 
temperature Θ′ (in the sense of Eq. (13)) differs from Θ and 
the inverse problem was solved for Θ′.  

The papers now discussed are based on the "balance 
approach" implying that the transitions between molecular  
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states due to the interaction with the field and 
intermolecular collisions are considered as independent. 
Therefore the change of the population of the state with 
time can be evaluated as the difference between the number 
of acts of coming to and from the corresponding energy 
level. Similar approach to description of the processes under 
study existed in the beginning of the "laser revolution" (see, 
for example, Ref. 27) and is very popular in astrophysics 
(Refs. 28 and 29). However, beginning from Refs. 3, 4, and 
9 the "wave" point of view (based on Eqs. (3) and (6)) has 
been accepted as a common one. In fact, derivation of 
Eqs. (1), (10) and (13) from (3) and (4) is its technical 
realization. Note, in addition, that modern nonlinear 
spectroscopy, which pays great attention to the effects 
occurring under low gas pressure (see, e.g., Refs. 30 and 
31), as well as plasma physics (see, Refs. 17, 32–34) are 
entirely based on semiclassical electrodynamics.  

The main statement of the present critical review is 
that the balance approach fails in application to a rather 
delicate problem of breaking relation (2).  

Discussion of this problem seems to be quite 
necessary. Actually, Eq. (15) shows that η depends on J. 
This, in turn, drastically changes the mathematical structure 
of Eq. (1), i.e., in addition to an ordinary nonhomogeneous 
differential equation one has to solve the integral equation 
relative to y from Eq. (15). Moreover, there arise the ideas 
of the lasing effect in the upper atmosphere (see, for 
example, Ref. 35). Meanwhile, the discussion of Eqs. (7)–
(9) and (10)–(12) shows unambiguously that the 
relationship between η and J can only exist for strong laser 
fields (spontaneous emission in the presence of a strong 
field8,36,37) independently of the fact is Eq. (13) valid or 
not. To say generally, we have just formulated the main 
argument in the spirit of reductio ad absurdum. Of course, 
this does not make the analysis of considerations leading to 
Eq. (15) unnecessary.  

Necessary element of the balance scheme is the use of 
considerations based on the Einstein coefficients for the 
derivation of Eq. (1) itself. This procedure is quite relevant 
in the case of equilibrium emission. Really, it is quite 
sufficient to know the energy of the system in order to 
analyze such an emission and according to quantum 
electrodynamics38 the photons–particle analogy should work 
here. (Remind that the photon wave functions exist in 
space, which is a Fourier transform of the real world38–39). 
Just for these reasons we can operate with a concept of "the 
photon density" as with a "real particle density" treating 
the molecule–to–molecule and molecule–to–photon 
collisions as the events of the same kind. However, Eq. (1) 
concerns the propagation of light (not the field properties in 
a cavity with absolutely black walls) and therefore the 
efficiency of the "photon–particle" analogy should be 
proved. But it is accepted without additional considerations 
and, moreover, it is supplemented with new elements 
(further we discuss Ref. 19). The a priori statement 
nonequilibrium behavior of the vibrational states yields the 
expression η = κB(E/E(0)), where E and E(0) are the mean 
energies (in a statistical sense) of vibrational states when 
thermodynamic equilibrium is violated and when it takes 
place, respectively. After that Curtis and Goody19 write 
down the equation dE/dt = (– γ)(E – E(0)) with the 
vibrational relaxation time τ = 1/γ. It could seem that for 
calculation of the ratio E/E(0) entering into η it is 
necessary to find the lim E/E(0) as t → ∞, i.e., a natural 
stationary limit, but then E/E(0) = 1 that certainly does 
not suit the authors of Ref. 19. Therefore, there appears a 
trick, namely, based on almost semantic sense of the 
quantities J and dE/dt the equality is written  

– γ(E – E(0)) = ⌡⌠ (k
0
 grad J) dω dk

0
 . (16) 

 

After substitution of Eq. (1) and the above–obtained η into 
Eq. (16) the equation for E/E(0) appears that yields 
Eq. (15). (The quantity τ′ is announced to be the value of 

∼ ⌡⌠ κ(ω) B(ω) dω what quite well agrees with quantum 

mechanics.18)  
The comment of similar considerations should be based 

on the well–understood relations between the process of 
quantum system interaction with field and their relaxation. 
The central statement of the considerations is that both 
these factors should be taken into account simultaneously 
since they interfere in the same quantum problem (6). An 
excellent qualitative illustration of the resonance case with 
ω = ω

0
, where ω

0
 is the frequency of the molecular 

transition can be found in a comprehensive analysis in 
Ref. 40. (For the line wing the situation is even more 
definite.4,41,42) On a free path the wave function of the 
molecule interacting with the field oscillates (with the 

frequency ED/h–, see Eq. (9)) between the upper and the 
lower states.43 The collision is necessary to interrupt this 
periodical process and only then absorption of a quantum 
could take place. Of course, it is also possible to calculate 
the transition probability per unit time using periodic wave 
functions. It will contain δ(ω – ω

0
) (see, for example, 

Ref. 18). Actually, the singularity is removed by 
substitution of the line contour instead of δ–function, but 
for its appearance the relaxation taking part in the game 
simultaneously with the field is absolutely necessary 
condition.  

As the formal illustration of these "wave" concepts the 
popular now "laser" system of equations can be considered 
as obtained from Eqs. (6) making use the reduction to the 

density matrix of an "active" (interacting with the field) 
molecule. For, example, for a two–level system it can be 
written as8  

 

∂ρ
nn

(t)/∂t + υ grad
R

 ρ
nn

 = 

1

i�
 (ρ

nm
D

mn
 –D

nm
 ρ

mn
)E –γ

n
(ρ

nn
 – ρ(0)

n
), 

 

∂ρ
mm

(t)/∂t + υ grad
R

 ρ
mm

 = – 
1

i�
 (ρ

nm
D

mn
 – D

nm
 ρ

mn
)E – 

– γ
m
(ρ

mm
 – ρ(0)

m
) ,  

 

(∂/∂t + υ grad
R
+ iω

0
 + γ

nm
)ρ

nm 
= 

1

i�
 D

nm
(ρ

nn
– ρ

mm
)E ,  

 

ρ
mn

 = ρ*
nm

 . (17) 

 

Now ρ
∧
 is the density matrix of an active molecule, and its 

Hamiltonian H
∧

0
 enters into Eq. (13). The values n, |n>, and 

E
n
 are the quantum index the eigenfunction and the 

eigenvalue of the operator H
∧

0
, ω

0
 = (E

n
 – E

m
)/�, 

ρ
nm

 = <n⏐ρ
∧
⏐m>, ρ(0)

n
 = <n⏐ρ

∧(0)⏐n>. For the dipole moment 

D of a molecule we have D
nm

 = <n|D|m>. Further, R and v 

are the coordinate of the molecular center of mass and its  
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velocity. In a linear with respect to the field variant the term 
v grad

R
( ... ) can be neglected, if compensated for this by 

introducing the Doppler effect according to the scheme 

discussed in Sec. 4. The numbers γ
n
, γ

m
, γ

nm
 = 

1
2 (γn + γ

m
) are 

just the relaxation constants. As usual, 1/γ
n
 is the relaxation 

time. System (16) has to be examined together with Eq. (3) 
and with the obvious definition of the dipole moment 

P = N ⌡⌠ dv ∑ (ρ
nm

D
mn

 + ρ
mn

D
nm

) (N is the number of 

active molecules in a unit volume).  
Now the quantities entering into Eq. (16) can also be 

seen in Eq. (17). Actually, by writing an obvious relation 

E = ∑ (ρ
nn

E
n
 + ρ

mm
E

m
) and by changing γ

n
 and γ

m
 for the 

average γ, as it is often made, one obtains 
 

γ

ω∼
 ⌡⌠ κ(ω) J(ω, k

0
) dω dk

0
 = ΔE + 4π ⌡⌠ η dω – 

 

– ⌡⌠ dω dk
0
 k

0
 grad J – γ(E – E(0)) . (18) 

 
In Eq. (18) ΔE is the change of the internal energy per unit 
time, ω is the average frequency, a stationary E is being 
implied here. Equation (18) is obtained by making use of quite 
common calculations including averaging over time, a passage 
to the spectral components and using the rules of Fourier 
transforms of the stationary functions. In the process of 
calculations a combination appears E(∂P/∂t) = Ej = Q, where 
Q is the amount of the absorbed heat with j = ∂P/∂t being 
the current of coupled particles. Then for the spectral 
components we have Q = κJ and Eq. (1) is taken into 
account.  

By taking the assumption of Eq. (16) we obtain  
 

γ

ω∼
 ⌡⌠ κ(ω) J(ω, k

0
) dω dk

0
 = ΔE + 4π ⌡⌠ η(ω) dω . (19) 

 

In the balance scheme extrapolated to the problem of light 
propagation the right–hand side of Eq. (19) should exactly 
coincide, for the stationary case, with the amount of 
disappeared energy of the field. However, it is possible only 

under the obviously absurd condition that γ = ω∼ (?!).  
In fact, the "wave" interpretation of Eq. (18) is quite 

evident, namely, it is the energy conservation law from the 
semiclassical electrodynamics. Equation (18) corresponding 
to the specific situations (17) does not have any special 
pragmatic meaning, and has been discussed here only for the 
sake of Eq. (19) which has to underline the arbitrariness of 
the assumption of Eq. (16).  
 

4. ON THE ABSORPTION LINE SHAPE UNDER 
CONDITIONS OF THE UPPER ATMOSPHERE 

 
Physical aspects of the problem on a spectral line 

shape under small pressures are well known, i.e., the 
Doppler effect has to be of a major importance.44 The 
simplest way to take it into account is in changing the line 
center frequency ω

0
 for ω

0
 + kv (v is as earlier the velocity 

of a molecular center of mass and k = (ω/c) k
0
 is the wave 

vector of the field) and averaging over Maxwellian 
distribution of the molecular velocities.  

A short preamble should be given prior to discussion 
of other essential element. The line shape of an isolated  

molecule is 
1
π Re ⌡⌠

0

∞

 dt exp(i(ω – ω
0
) t); as a result of 

introducing the Doppler effect the quantity vt appears and 
this product accounts for collisional effects occurring during 
a travel of the center of mass of a molecule along a 
trajectory has to be written as R(t). The last quantity is 
undoubtedly a random value and averaging over the 
probability of a displacement of the molecular center of 
mass on the value R during time t at the initial velocity v 
W(R, t, v), is quite necessary. Then the line shape45 is  
 

g(Ω) = 
1
π ⌡⌠

0

∞

 dt ⌡⌠ dr dv W(r, t, v) eiΩt–ikR ,  Ω = ω – ω
0
 . (20) 

 
Equation (20) is interpreted as a relation that takes into 
account the collisional effects on the Doppler line shape.  

A more detailed account of collisions leads to the 
convolution44–46  

 

g′(Ω) = 
β
π ⌡
⌠ 

g(Ω′) dΩ′
(Ω – Ω′)2 + β2 (21) 

 

with the function g(Ω) from Eq. (20) and β being the 
Lorentzian line halfwidth. For a line wing β is replaced by 
the corresponding function β(Ω) (see Ref. 14).  

To this end, the line shape calculation has to be 
preceded by calculation of W. This function is the solution 
of the Boltzmann equation.32,47  
 

∂W
∂t  + v grad W = St(W) (22) 

 

which involves the collision integral St(W). If one assumes 
that St(W) = 0 one arrives at the procedure from the 
beginning of this section (it was referred to during the 
discussion of Eq. (17)). It is possible to use the equation 
similar to the Fokker–Planck equation,32,48 the 
approximation of "light active molecules in a gas of heavy 
buffer molecules"32 and so on. Very popular45 is the version 
from Ref. 49; though formally it describes the situation of 
"heavy active molecules in a light buffer gas", its 
approximation capabilities are much wider. Of course, 
careful calculations of the line shape at high altitudes with 
the properly chosen St(W) in Eq. (20), adequate to the 
physical conditions of the problem, is the necessary element 
of the analysis.  

Now we should be convinced that the physical 
grounds of Eq. (20) (and Eq. (21)) result in a spatial 
dispersion (4).  

The proof starts with the solution of Eq. (6) in the 
first order of the theory of perturbations over parameter (9)  

 

P(r, ω) = ⌡⌠
0

∞

 dt eiωt Tr ρ
∧(0) 

1

i�
 × 

 

× ⎝
⎛∑

α

 E(r
α
, ω) e

α
r
α
, exp[ – (t/i�) H

∧
0
] × 

 

× ⎦
⎤∑

α′

 e
α′
r
α'
δ(r – r

α'
) exp[(t/i�) H

∧
0
]  . (23) 

 
Further some standard simplifications14 of Eq. (23) are done.  
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The long wave approximation for intramolecular 
degrees of freedom and interpretation of the active molecule 
as a dynamic subsystem as well as obvious isotropy of the 
medium enable one to separate out E(R, ω) from Eq. (23) 
with the former sense of R. The factor "line intensity S" 
and exp(–iω

0
t) will appear (the latter comes from the 

interaction representation for exp(± (t/i�) H
∧

0
)). Quite 

remarkable here is the role played by δ(r – r
a'

). It is 

evident from the above facts that it can be changed for 
δ(r – R). Of course, R is considered to be the classical 
quantity and δ–function during the averaging of Eq. (23) 
over the elementary volume, necessary for the transition to 
macroscopic electrodynamics, will make one to consider 
only those trajectories of molecular centers of mass which 
begin at the point r. In other words, it will be necessary to 

seek the probability of the displacement on R – r (i.e., 
W = W(r – R, t, v)). Finally, it has to be noted that the 

operation Trρ
∧(0) includes ⌡⌠ dR dv W( ... ) since R is a 

classical quantity.  
Introducing all the quantum operations and the 

integration over v into the definition of f from Eq. (4), 
taking into account the dependence of the system field 

response just on (r – R), separating ⌡⌠ dR from Tr, and 

performing an obvious substitution of the integration 
variable we shall see Eq. (4).  

The absorption coefficient of an individual line is 
equal to Sg(X), and now we have its explicit form (20). 
Actually, just this gives a possibility of writing Γ(Ω, λ) for 
quantity (10): now by comparing Eqs. (4), (11), (10), and 
(20) we obtain  
 

Γ(X, λ) = 
Sc

4π2ω
 i ⌡⌠

0

∞

 dt ⌡⌠ dr dv exp(iΩt–iλR) W(R, t, v). (24) 

 

Total function Γ(ω, λ) is a sum of Eqs. (24) over the 
absorption lines. Generalization of Eq. (24) into Eq. (21) is 
quite evident, thus for Re Γ one only needs to write a 
convolution as in Eq. (21) with quantity (24) instead of 

g(Ω′) while Im Γ can be found using the dispersion 
relations. (It is worthwhile to note here the problem on the 
ray refraction which could probably be of interest (the 
calculation of k

0
 in Eq. (1)) in the medium with the spatial 

dispersion).  
The physical meaning of Eq. (4) in the case of small 

pressures is rather clear. Indeed, the spatial dispersion 
appears when it is impossible, for some reasons, to use the 
long wave approximation for the centers of mass.14,41 A 
large length of free paths and the interaction between the 
molecule and the resonance field just during the free flight 
are the circumstances making the long wave approximation 
to be inapplicable. It was emphasized in Ref. 14 that the 
spatial dispersion in the line wings and that considered now 
are the limiting cases (with respect to the value Ω) of the 
same problem "centers of mass of molecules".  
 
5. EMISSION COEFFICIENT AT SMALL PRESSURE 

 
Let us return to the discussion of Eq. (10). As it turns 

out14 Eq. (10) is reduced to Eq. (2) under two conditions, 
namely, (i) there is no spatial dispersion, i.e., Eq. (4) 
changes into Eq. (5), (ii) there exists the thermodynamic 

equilibrium, i.e., density matrix (13) and Eq. (4) for the 
correlator are valid.  

In Ref. 14 there was given a detailed discussion of the 
spatial dispersion of the imaginary part of the dielectric 
constant inherent in the band wings, and there are 
convincing experimental evidences of its existence, and 
among them the breakdown of the local thermodynamic 
equilibrium. Similar numerical and experimental analysis of 
the spatial dispersion typical of low pressures is yet to be 
done.  

There is one quite evident cause of breaking the 
condition (ii) in the upper layers of the atmosphere, namely, 
the photochemical reactions (similar question was discussed 
in Ref. 50). The beams of charged particles, etc. can 
certainly change the quantum state population. Now we 
need to keep in mind Eq. (12) and a small modification of 
its derivation is required. It takes into account the fact that 
in an ordinary for the gas phase binar approximation the 
line shape appears as a statistical average of the δ–function 
the argument of which is the golden Fermi rule in the 
problem on two colliding molecules.14 As a result, the main 
formal element is conserved for understanding the 
relationship between Λ and κ.  

As a result we obtain  
 

Λ = 
1 + exp( – �ω/kΘ)

1 – exp( – �ω/kΘ)
 ∑
nm

 
1 + exp( – �ω/kΘ) σ

mn

1 + exp( – �w/kΘ)
 × 

 

× 
1 – exp( – �ω/kΘ)

1 – exp(�ω/kΘ) σ
mn

 Im Γ
∼

mn
 . (25) 

 
The numbers n and m are, as earlier, the quantum indices of 

the active molecule and ∑
nm

  is the sum over lines (n denotes 

the lower state); σ
mn

 = σ
m
/σ

n
, σ

n
 = ρ

n
/ρ is the ratio of the 

population appeared as a result of the external forces to the 
equilibrium population (only the intramolecular degrees of 
freedom are considered here). The quantity Γ

mn
 is 

constructed like Eq. (24) with the only difference that a 
line intensity factor σ

n
 is added.  

There is one more, and universal, cause of the 
systematic deviation from Eq. (13), namely, the 
thermodynamic when the number of molecules in the unit 
volume is comparatively small. Of course, the 
electromagnetic fluctuations discussed in Sec. 2 are 
"instantaneous" as compared with the thermodynamic ones 
and therefore they can be directly introduced into Eq. (10).  

The fluctuation problem of the distribution function is 
well known in physical kinetics,32 and it again brings us 
back to Eq. (22). The solution that follows is done with 
two simplifications taken into account. First, X is believed 
to be a stable distribution,51 i.e.,  
 

⌡⌠ W(R
1
, t

1
, v) W(R

1
 + R, t

1
 + t, v) dR

1
dt

1
 = τW(R

1
, t

1
, v) , 

 
where τ is the relaxation time. Second, taking the standard 
interpretation of relaxation of systems in states which are 
close to an equilibrium one assumes that in the equation 
similar to Eq. (22) for the thermodynamic–fluctuations 
correlator St(W) = (– 1/τ)W.  

Other approximations are, in fact, only technical ones 
and in the final expression the quantity  
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N 
⏐D⏐4

�2
 ρ(0)

n
 [μ

m
 – μ

n
 exp( – �ω/kH)] (26) 

 

with summation over lines should be added to the term 

c th (�ω/kΘ)(Im Γ)2 in the numerator of the integrand in 

Eq. (10) corresponding to Eq. (14). As earlier N is the 
number of active molecules per unit volume, D

nm
 are the 

matrix elements of the dipole moment and ρ is the same as 
in Eq. (15). Then  
 

μ
n
 = 

τ
n

υ2
0
λ
 

1

2π3 ⌡⌠ kdk ⌡⌠ dΩ′g(Ω′, k) B(Ω – Ω′, k, λ) 

 
with line shape (20) (or (21), if necessary), and the 
relaxation time is labelled by the index of the state, υ2

0
 is 

the rms velocity and  

B(Ω – Ω′, k, λ) = ⌡⌠
0

∞

 
 dz e–τ/z 

sin(λυ
0
z) sin(kυ

0
z) cos((Ω – Ω′)z)

z2 . 

 
6. CONCLUDING REMARKS 

 
The conditions existing in the upper atmosphere 

introduce rather nontrivial features into the description of 
the emission and absorption of light. Below we only name 
the problems arising here.  

The problems on the line shape, and on the spatial 
dispersion and its effect on the absorption and emission 
coefficients (Eqs. (20), (21), (24), (10), and (11)) have to 
be preceded by a careful choice of the statistical model for 
the collisional integral in Eq. (22).  

Only detailed numerical analysis of the problem for 
different spectral regions, absorbing gases and models of the 
atmosphere will enable one to establish how essential is the 
spatial dispersion and the fluctuations of distribution 
(Eqs. (10) and (26)) for the absorption coefficient and for 
the case of broken local thermodynamic equilibrium.  

The change of the emission coefficient caused by the 
photochemical reactions and by other external factors 
(Eq. (25)) can be very attractive for solving corresponding 
inverse problems (for example, for limb measurements from 
satellites).  

There appear rather long paths in many applied 
problems of atmospheric optics and the necessity could arise 
of taking into account the refraction along the paths. Its 
value for the medium with the spatial dispersion (similar to 
that in Eq. (24)) has not been yet evaluated.  
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