
V.V. Belov Vol. 5,  No. 8 /August  1992/ Atmos. Oceanic Opt.  531 
 

0235-6880/92/08  531-04  $02.00  © 1992 Institute of Atmospheric Optics 
 

METHOD OF THE GREEN'S FUNCTIONS AND LINEAR–SYSTEMS 

APPROACH IN THE THEORY OF TRANSFER AND RECORDING OF 

OPTICAL RADIATION 
 

V.V. Belov 

 

Institute of Atmospheric Optics,  
Siberian Branch of the Russian Academy of Sciences, Tomsk 

Received May 26, 1992 
 

The correspondence between the linear–systems approach and method of the 
Green's functions as well as a procedure for constructing the Green's functions 
providing an account of peculiarities of image formation by optical systems are 
considered. 

 
The solution of the problem of optical signal 

propagation through scattering and absorbing media is of 
great importance for fundamental and applied problems. 
The comprehensive analysis of the effect of molecular and 
dispersed components of the media forming the propagation 
channels of optical radiation on the signal characteristics 
expands the range of applicability of conventional optical 
and opto–electronic systems (for example, in aerospace 
photography, underwater photography, astronomical 
observations, etc.), and allows one to develop new methods 
and means for the study of the propagation channels 
themselves by optical methods. One of the most well–
known lines of studying is, for example, laser sensing of the 
atmosphere as a scattering and absorbing medium. The 
theory of laser sounding and the commercially available 
lidars are based on the previously ascertained regularities of 
scattering and absorption of optical signals in dispersed and 
molecular–gaseous media. The efficiency of these (and 
others) opto–electronic systems is obviously determined by 
the degree of understanding of the physical processes chosen 
as the most informative for achieving the purposes being of 
concern to a developer of opto–electronic systems. 

Let us consider in the most general form the problem of 
propagation of optical signals disregarding the concrete subject 
areas and formulate the most general approaches to its 
solution. Let us arrange to distinguish between the input and 
output optical signals. The signal specified at the point (in the 
region) of its emission or incidence on the boundary of the 
scattering and absorbing medium will be called the input 
signal P

in
. The signal specified at the point (in the region) of 

its recording will be called the output signal P
out

. 

Thus, we will consider the signals P
in
 and P

out
(t) to 

be one–dimensional signals if they are specified at a fixed 
point (or in the region) of the space as functions of time t, 
two–dimensional signals P

in
, P

out
(x, y) in the stationary 

case, and three–dimensional signals P
in
, P

out
(x, y, t) in the 

case of their spatial–temporal dependence. The first case 
obviously pertains to the theory of optical detection and 
ranging, sounding, and communication, the second case is 
treated in the vision theory and in the theory of passive 
sounding of the underlying surface temperature. The third 
case is realized, for example, in observations of dynamic 
phenomena. We will assume that the radiation source and 
receiver are screened by the scattering medium whose 
optical properties are fixed at each point, unchanged with 
time, and specified by the values of the coefficients of 
scattering β

sc
(r), extinction β

ext
(r), and absorption β

ab
(r) 

and the scattering phase function g(r, ω). 

The studies of the optical signal propagation in the 
scattering media are aimed at finding the regularities and 
relations between the spatial, temporal, energetic, and other 
characteristics of the input and output signals depending on 
the optical properties and geometric parameters of the 
propagation channels of the short–wave radiation. In the 
most general form these relations in terms of the radiant 
intensity are given by the stationary  

 
(ω, grad I(r, ω)) = – β

ext
(λ, r) I(r, ω) + 

 

+ β
sc
(λ, r) ⌡⌠

Ω

  I(r, ω′) g(r, ω; ω′) dω′ + Φ
0
(r, ω) (1) 

 
or nonstationary  
 
1
c 
∂I(r, ω)

∂t
 
+ (ω, grad I(r, ω, t)) = –β

ext
(λ, r) I(r, ω) + 

 

+ b
sc
(λ, r) ⌡⌠

Ω

  I(r, ω′)

 

g(r, ω′, ω) dω′ + Φ
0
(r, ω) (2) 

 
integro–differential equations of radiative transfer (here 
I(r, ω, t) is the intensity at the point r in the direction ω at 
time t). Any problem of the theory of optical signal transfer 
in scattering media can be reduced to the solution of 
Eq. (1) or Eq. (2) with corresponding boundary and initial 
(in the nonstationary case) conditions.1 

The problem having been formulated in such a way 
is analogous to the problem of the theory of analysis of 
radio–engineering systems. Let us disregard the 
peculiarities of the physical nature of propagation 
channels of signals in optics and radio engineering and 
the physical processes accompanying the energy transfer 
from a source to a receiver. Then to study formally the 
channels with distributed scatterers the well–known 
method of the theory of linear–system analysis can be 
applied (the linearity of the atmospheric optical channels 
follows from the linearity of Eqs. (1) and (2) in the 
intensity). When the linear systems are invariant under 
spatial and (or) temporal shift of the sources, the 
fundamental principles of this approach to the solution of 
the problems of the theory of the optical signal transfer 
in the scattering media (as applied to the problems of 
laser detection and ranging, sounding, and 
communication) can be reduced to the following relations: 
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P
out

(t) = ⌡⌠
0

∞

  Pin
(t′) h(t – t′) dt′ , (3) 

 

K
⋅

out
(γ) = K

⋅

in
(γ) H

⋅

(γ) . (4) 

 
Here h(t) is the unit–pulse response of the channel of 
sounding, detection and ranging, and communication to the 

δ(t) pulse; K
⋅

out
(γ), K

⋅

in
(γ), and H

⋅

(γ) are the complex 

spectral representations of the signals P
out

(t), P
in
(t), and 

h(t), respectively,  
 

h(t) = F –1[H
⋅

(γ)] ,  H
⋅

(γ) = F[h(t)] , (5) 
 
F and F –1 are the direct and inverse one–dimensional 

Fourier transforms, H
⋅

(γ) is usually called the transfer 
function of the system. 

As applied to the vision theory 
 

P
out

(x, y) = ⌡⌠
 –∞

  ∞

  ⌡⌠  Pin
(x – x′, y – y′) h(x′, y′) dx′dy′ ; (6) 

 

h(x, y) =
 
F–2[H

⋅

(γ, ω)] ,  H
⋅

(γ, ω) = F–2[h(x, y)] (7) 
 
here h(x, y) is the unit–pulse response of the vision channel 
at the point (x, y) of the image plane to the source 
δ(x*, y*) in the object plane and F2 and F –2 are the direct 
and inverse two–dimensional Fourier transforms. The 
fundamental principles of the linear–system approach (LSA) 
to the solution of the atmospheric optics problems in the 
case of dynamic phenomena observed through scattering 
media can be written down analogously. 

However, before using the obvious advantages of the 
LSA for the study of regularities of the optical signal 
transfer in dispersed media it is necessary to take into 
account a number of factors of principal importance. 

Let us refine the notion of a signal in optics of 
dispersed media as applied to the problems of: laser 
(optical) sounding and detection and ranging (a) and vision 
theory (b). 

a) We will consider two possible definitions of optical 
signals and unit–pulse responses of channels with 
scattering. 

The first definition. 
 
P

in
 = I(r*, t, ω*, λ) = I(r*, t, ω*) , (8) 

 
i.e., here the intensity emitted by the source located at the 
point r* at the wavelength λ (below for brevity λ is omitted 
if there is no special need in it) in the direction ω* at time t 
is considered to be the input signal. Similarly, 
 
P

out
 = I(r**, t, ω**) . (9) 

 
Taking into account the unambiguous relation between the 
transfer functions and the unit–pulse responses, we restrict 
ourselves to the examination of the latter in most cases. The 
unit–pulse response h(t) has the form 
 
h(t) = I(r**, ω**, t ; r*, ω*, δ(t)) , (10) 
 
 

hence, it is the intensity at the point r** in the direction ω** 
at the time t given that P

in
 = I(r*, ω*, δ(t)): [h] = [I]/s. 

The second definition. 
 

P
in
 = ⌡⌠

Ω*

  I(r*, ω*, t) dω* (11) 

 
is the power of the optical signal emitted by the source located 
at the point r (or in the region centered at the point r*).  
 

P
out

 = ⌡⌠
Ω**

  I(r**, ω**, t) dω** , (12) 

 
i.e., the intensity of radiation incident on the aperture of the 
optical receiving system is considered to be the output signal. 
Then  
 
h(t) = P

out
(r**, t ; δ(t)) . (13) 

 
The unit–pulse response in this case is the output signal 
power given that the input signal P

in
(t) of the form given 

by Eq. (11) is radiated as the δ–pulse: [h] = [power]/s. 
b) By analogy with the one–dimensional case let us 

consider two definitions of the optical signals and unit–
pulse responses of the vision systems (we have this notion 
earlier introduced for the systems formed by the optical 
system, the object plane, and the scattering medium 
separating them). Hereafter it is assumed that the object 
plane is the XOY plane of a Cartesian coordinate system. 

The first definition. 
 
P

in
 = I(x*, y*, ω*) . (14) 

 
Thus, the intensity emitted by the object plane at the point 
(x*, y*) in the direction ω* is considered to be the input 
signal. The radiation intensity transmitted through the 
scattering medium and arriving at the point r** in the 
direction ω** is considered to be the corresponding output 
signal P

out
 

 
P

out
 = I(r**, ω**) . (15) 

 
The unit–pulse response can be now written down as  
 

h(r**, ω**) = I(r**, ω**; δ(x – x*), δ(y – y*), ω*) (16) 
 

and means the intensity at the point r** in the direction ω** 
created by the single–point source (x*, y*) located in the 
object plane and radiating in the direction ω*: [h] = [I]/m2. 

The second definition.  
 

P
in
 = ⌡⌠

Ω*

  I(r*, ω*) G(ω*, x*, y*) dω* (17) 

 

is considered to be the radiation intensity at the point r* of 

the object plane. Here G(.) is the directional pattern of 
radiation emitted from each point of the surface. The unit–
pulse response 
 

h(r**,ω**) =⌡⌠
Ω*

  I(r**,ω**;δ(x–x*),δ(y–y*))G(ω*,x*,y*)dω* 

 (18) 
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keeps the meaning and dimensionality of Eq. (16) given 
that the input signal is the point of the object plane having 
coordinates (x*, y*) and radiating in accordance with the 
directional pattern G(ω*, x*, y*). 

First of all we note that the unit–pulse responses in 
the form of Eqs. (10) and (16) are identical to the Green's 
functions known in the linear transfer theory as 
fundamental solutions of the radiative transfer equation. 
For them relations (3)–(7) are obviously satisfied. 
Moreover, it also follows from the linearity of Eqs. (1) and 

(2) that the responses h(.) in the form of Eqs. (13) and (18) 
can be easily obtained if the Green's functions (10) and (16) 
are known. Now the prospects for the development of 
optical systems intended for various purposes are associated 
with the creation of opto–electronic complexes. When they 
operate under real conditions an external channel of 
propagation of optical signals is added to their optical and 
electronic channels. It is natural to provide a basis, if it is 
possible, for describing all these channels by the same 
notions, terms, and parameters that simplifies the procedure 
of adjusting different units and their optimal choice for 
achieving the formulated purposes. Taking into account that 
in radio engineering and theory of optical systems such an 
adjustment is achieved by means of the power system 
characteristics, it looks natural to describe the external 
channels of the opto–electronic systems at the same 
conceptual level, i.e., with the help of or on the basis of the 
characteristics written down in the form of Eqs. (13) and 
(18). In this case, for example, the signal spectrum at the 
output of the opto–electronic complex can be represented in 
the form 

 

K
⋅

out 
=
 
K
⋅

in
 H
⋅

ec
 H
⋅

oc
 H
⋅

eu
 , (19) 

 

where H
⋅

ec
 is the optical transfer function of the external 

channel of the complex, H
⋅

oc
 is the transfer function of its 

optical channel, and H
⋅

eu
 is the transfer function of its 

electronic unit. We note that Eqs. (10) and (16) are written 
down for radiation intensities at the input of the optical 
system. On the assumption of the linearity of the optical 
system its effect on the signal characteristics is accounted 

for by the factor H
⋅

oc
 in Eq. (19). In other words, it follows 

from Eq. (19) that we succeeded in separating the problem 
of an account of the effects of the optical system and of the 

scattering medium on K
⋅

out
 into two independent problems 

which can be solved separately. That is, to take into 

account the effect of the scattering medium on K
⋅

out
, we 

must only find the solution of the transfer equation (the 
Green's function) at the point r** in the direction ω**, and 
take into account the effect of the real optical system via its 
unit–pulse response or optical transfer function. It appears 
that even on the basis of the above assumptions the 
procedure of constructing the solution of Eq. (19) 
accounting for Eqs. (10), (13), and (18) is not always 
applicable. This is due to the fact that in the process of 
propagation of the information–bearing optical signal 
through the scattering medium the latter becomes a three–
dimensional source of a background signal of secondary 
emission. Since the optical system is usually adjusted to the 
source of a valid signal and is characterized by the finite depth 
of sharpness in the image space, even the ideal optical system 
can introduce the distortions which were ignored in Eq. (19).  

It is impossible to take this effect into account in terms of the 
Green's functions in the form of Eqs. (10) and (16). It will be 
done, however, if we determine the Green's functions as 
functions of the coordinate l along the direction ω**, i.e., 
 
h(r**, ω**, l, t) = I(r**, ω**, l, t, r*, ω*, δ(t)) ; (20) 
 
h(r**,ω**, l, x*, y*) = I(r**, ω**, l; δ(x – x*), δ(y – y*), ω*).(21) 
 

 
 

FIG. 1. Geometric diagram. P is the plane of ideal 
(unblurried) image of the point M; (x*, y*) are the 
coordinates of this image; M′ is the point of maximum 
illumination. 
 
Let the ideal optical system have a finite depth of sharpness 
in the image space and the boundary of this region nearest 
to the system be at the distance D from it. Let us place the 
single–point source (center of scattering) on a ray in the 
direction ω**. Then its radiation intensity incident on the 
input pupil of the system is transformed by it into the 
illumination of the object plane according to the rule: 
 

β(l; x**, y**) = 

⎩
⎨
⎧1,  l > D ;

E(l; x**, y**)/⌡⌠ ⌡⌠ E(.) dx**dy** , l < D, 

 
where E(l, x, y) is the distribution of the illumination over 
the blur circle.  

If the values of I(r**, ω**; l) at each point of the ray 
in the direction ω* are known and β(l) is specified then by 
summing over the intensities I(r**, ω**; l) coming from all 
points of the ray with the weight β(l) we will determine the 
unit–pulse response (to the point perturbation in the object 
plane at the point (x**, y**) in the direction ω**) of the 
ideal optical system taking into account the finite depth of 
sharpness in the image space. Taking this into account 
Eq. (19) can be written down as 

 
K

out
 = K

in
 H

vs
 H

oc
 H

eu
 , 

 
where H

vs
 is the optical transfer function of the vision 

system formed by the medium, the object plane, and the 
ideal optical system. 

Thus, the regularities of the effect of the scattering 
medium on the transfer of optical signals can be studied by 
the methods of the Green's function in the form of 
Eqs. (20) and (21) or of the linear–systems characteristics 
determined by Eqs. (13) and (18). We stress that the 
above–given definitions of signals, unit–pulse 
characteristics, and all the relations are valid only for the 
single point in the object plane of the optical system (or for 
the intensity I(r**, ω**) or I(r**, ω**; l)). However, 
making use of the notion of isoplanarity of images we can  
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generalize all the results obtained at this point to isoplanar 
area comprising it. Then the evaluation of the dimensions of 
isozones turns out to be a problem of particular importance for 
the theory of transfer and recording of optical signals through 
the scattering media. These problems were studied in Ref. 2. 
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