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The radiative heat influx effect on the evolution of the height of the ground 
temperature inversion boundary is estimated. We derived the differential equation 
that provides the estimate of the variation of this height depending on different 
profiles of radiative cooling. The results of numerical modeling are discussed. 

 
In the studies of the important problems such as the 

analysis of propagation channels for electromagnetic and 
acoustic waves in the boundary atmospheric layer, remote 
sensing of optical and meteorological parameters, modeling of 
the processes of atmospheric pollutant transformations, and 
the like, the certain role is played by the prediction of the 
evolution of the upper boundary of the ground temperature 
inversion. The general approach to this problem has been 
formulated in a number of paper (see, for example,  
Refs. 1–6). However, in our opinion, some related questions 
must be refined. The main goal of the present paper is the 
estimation of the effect of radiative heat influx profile on the 
evolution of the ground temperature inversion boundary after 
the sunset. 

For convenience we will use hereafter the notions  
T–inversion and θ–inversion implying the region of the 
boundary atmospheric layer with increasing absolute (T) and 
potential (θ) temperatures. Recall that the potential 
temperature θ is the temperature of an air parcel which it 
takes after rising or descending dry adiabatically from the 
initial height corresponding to the pressure p to the height 
corresponding to a pressure of 1000 mbar. It is related to the 
absolute temperature of the given air parcel by the formula 
θ = T (1000/p)2/7. The heights of the T– and θ–inversions 
are denoted by hT and h

θ
. Following Ref. 1, we take the 

heat–conduction equation in the form 
 

∂θ

∂t
 = – 

∂( w′θ′ )

∂z
 + ( )∂θ

∂t p
 , (1) 

 

as a basis for our study, where z is the vertical coordinate, t is 
the time, w′ and θ′ are the random pulsations of the vertical 
component of the wind velocity and of the potential 
temperature. The bar above w′θ′ denotes averaging of this 
product (the vertical turbulent temperature flux) over an 
ensemble of realizations. The second term in the right side of 
Eq. (1) is related to the radiative heat influx (sink). 
Advection, latent heat influxes, and so on are neglected. Both 
the underlying surface and the atmosphere in the horizontal 
plane are assumed to be homogeneous. Note in addition that 
the use of the potential temperature θ rather than the absolute 
temperature T is caused first of all by a more compact form of 
heat–conduction equation (1) which is a consequence of the 
first law of thermodynamics. 

Let us assume, following, for example, Refs. 1–6, that 
the night profile of the potential temperature within the  
θ–inversion is given by the formula 

 

θ(z, t) = θh(t) – [θh(t) – θ
0
(t)] [1 – z/h

θ
(t)]α . (2) 

 

Here the subscripts h and 0 imply that the appropriate 
quantities are taken at the heights z = h

θ
 and z = 0. The 

power α varies, as a rule, between 2 and 4 according to the 
experimental data (see, for example, Ref. 1). 

The second term in the right side of Eq. (10) is 
determined by the vertical gradient of the effective flux of 
the long–wave radiation. Its value depends primarily on the 
humidity and the atmospheric temperature. In general it 
includes integrals, i.e., Eq. (1) is in fact rather complicated 
integro–differential equation. The peculiarity of the vertical 
profile of (∂θ/∂t)p consists in the fact that at the upper 

boundary of the ground θ–inversion the night radiative 
cooling is much less than at the underlying surface. Taking 
this peculiarity into account we can use a simplified 
representation of the radiative influx (sink) with the main 
features of its height dependence, for example 
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∂θh

∂t
 + ⎝
⎛

⎠
⎞c 

∂θ
0
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∂θh

∂t
 
⎝
⎛

⎠
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z
h
θ

n
 , 0 ≤ z ≤ h

θ
 . (3) 

 

Here c 
∼
< 1 is the parameter which takes into account the 

turbulent heat flux at the ground. It is usually assumed (see 
Refs. 1 and 7) that n = 1 and θ(z > h

θ
) = const. However, 

we will not restrict ourselves to these conditions.  
Making use of Eqs. (1)–(3) and the condition  

( w′θ′ )h = 0 we derive, according to the approach of Ref. 1 

on the basis of a transition to the differential equation in 
h
θ
, the following relation: 

 

(θ
0
 – θh)

 
dh

θ

dt  + h
θ
 
∂

∂t
 
⎣
⎡

⎦
⎤α – n

n + 1 θh + ( )1 – c 
α + 1
n + 1 θ

0
 = 

=
 
(α + 1)( w′θ′ )

0
 . (4) 

 

To estimate the effect of the unsteady temperature 
above the inversion on the evolution of its upper boundary, 
we specify the simplest model of linear decrease of θ with 
height described by the formula 

 

θ(z ≥ h
θ
, t) = θ(zm, t) + γ(t) (zm – z) . (5) 

 

Here zm is the reference height (the θ values at this height 

are denoted by the subscript m), γ is the potential 
temperature gradient above the θ–inversion (γ ≥ 0). With 
the use of Eq. (5) for evaluating θ at z

 
= h

θ
 Eq. (4) can be 

written down as 
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(ϕ
0
 + ϕ

1
h
θ
) 

dh
θ

dt  = f
2 
h
θ

2 + f
1
h
θ
 + f

0
 , (6) 

 
where ϕ

0
 = (n + 1)(θ

0
 – θm – γ zm), ϕ

1
 = (2n + 1 – α)γ , 

f
0
 = (n + 1)(α + 1)( w′θ′ )

0
,  

f
1
 = 

∂

∂t
[(α – n)(θm + γ zm) + (n + 1 – cα – c)θ

0
], 

f
2
 = (α – n) 

dγ
dt.  

 
The subscripts adjacent to ϕ and f are not related to the 
height. 

In general Eq. (6) has not yet been solved; however, in 
some particular cases the solution is possible. For example, 
for 2n + 1

 
= α and γ = const Eq. (6) is reduced to 

 
dh

θ

dt  = (h
θ
 f

1
 + f

0
)/ϕ

θ
 (7) 

 
and has the solution  
 

h
θ
(t) = e–F 
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θ
(t

0
)
 
+
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0
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⎥
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eF dt , (8) 

where t
0
 is the initial time and  

 

F(t) = 
⌡
⌠

t
0

t

 

 1
θ
0
 – θm – γ zm

 ⎣
⎡

⎦
⎤∂θm

∂t
 + (1 – 2c) 

∂θ
0

∂t
 dt . (9) 

 
In particular, for n = 1, α = 3, γ = 0, and θm = θh = const 

we obtain the results of Ref. 1. Some other combinations of 
the parameters are available; for them the analytical 
solution of Eq. (6) can be obtained. 

The height h
θ
 of the θ–inversion boundary may be 

related to the height hT of the T–inversion boundary with 

the use of Eq. (2) and an approximate equality (at the 
ground pressure being equal to 1000 mbar) 

 
θ(z, t) ≈ T(z, t) + γa z , (10) 

 
where γa = 0.01 K/m is the adiabatic temperature gradient. 

Equality (10) is a consequence of the fact that the 
temperature T of the adiabatically descending air parcel 
increases by about 1 degree per 100 meters. Finally we have 

 

hT = h
θ 
⎩
⎨
⎧

⎭
⎬
⎫

1 – 
⎣
⎡

⎦
⎤γa hθ

α(θ
θ
 – θ

0
)

1/(α–1)

 . (11) 

 
Based on the above–derived equations, we estimated 

numerically the effect of the radiation heat influx (sink) 
profile and of the possible unsteady temperature above 
the inversion on h

θ
 and hT. The following set of the 

parameters were chosen as a reference one: n = 1, α = 3, 
c = 0.95, θm = 0, ∂m/∂t = 0, zm = 1 km, h

θ
(t

0
) = 20 m, 

ΔH = θh – θ
0
(t

0
) = 3 K, t

0
 = 20 h, LT, i.e., a bit later 

after the sunset. The temperature θ
0
 was described by 

curve 1 shown in Fig. 1a, the heat flux at the ground 

Q
0
 = cp ρ( w′θ′ )

0
 was described by the function plotted  

in Fig. 1a. Under these conditions the profiles of the 
absolute (dashed curves) and potential (solid curves) 
temperatures are shown in Fig. 1c. The figures 1, 2, and 3 
adjacent to the curves indicate 20, 24, and 4 h, LT, 
respectively. This model of the temperature profile satisfies 
the conditions used in Ref. 1. The evolution of the heights 
hT and h

θ
 of the boundary under these conditions is shown 

in Fig. 1d, by the curves 1 (solid curves are for h
θ
 and 

dashed curves are for hT). 

 

 
 

FIG. 1. 
 

In this very figure some other dependences of h
θ
 and hT 

are drawn as an example of sensitivity of the ground inversion 
height to variation in one or another parameter. Thus, if under 
condition of conservation of the basic set of the parameters the 
ground temperature varies according to curve 2 in Fig. 1a then 
the inversion height (h

θ
 or hT) will vary with time according 

to curves 2 in Fig. 1d. If in the basic set of the parameters the 
initial temperature difference between the ground and the 
boundary of the θ–inversion is ΔH = 5 K, the quantities h

θ
 

and hT will vary according to curves 3. In addition, the 

evolution of the inversion is strongly affected by its height at 
the initial time. As an example, curves 4 are shown in Fig. 1d 
obtained at h

θ
(t

0
) = 50 m. 

Considering further the dependence of h
θ
 on the 

radiative heat sink profiles we use the above–indicated set 
of the parameters noting only the changes in it. Let us 
assume that the potential temperature is constant above the 
inversion. Then, for α = 3 and n = 1, 2, and 3 the height h

θ
 

increases throughout the night according to the curves 
shown in Fig. 2a (the figures adjacent to the curves indicate 
the values of n). The increase of n corresponding to the 
decrease of radiative cooling within the inversion slows 
down the rate of increase of its height. It is especially 
noticeable when going out from n = 1 to n = 2. However, it 
should be kept in mind that the effect of nonlinearity of the 
radiative cooling profile becomes less pronounced when the 
potential temperature profile tends to the linear one. It is  
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confirmed by Fig. 2b in which solid curves are for α = 2 
and dashed curves for α = 4. The figures adjacent to the 
curves indicate the values of the parameter n. We do not 
give the height hT because it can be easily calculated from 

Eq. (11). It is obvious that the nonlinearity of the radiative 
influx (sink) profiles has an appreciable effect on the 
inversion height and when predicting it with the use of 
radiative cooling model (3) special attention should be 
drawn to the correct choice of the power n. 

 

 
 

FIG. 2. 
 

We have treated the case of the constant potential 
temperature above the θ–inversion without the radiative and 
turbulent heat exchange above h

θ
. However, in reality the 

processes of night cooling of the atmosphere can also take 
place above the inversion. To estimate their effect on the 
evolution of the θ–inversion height, let us first consider the 
case in which above the θ–inversion the neutral behavior of 
the potential temperature is preserved, i.e., ∂θ/∂z = 0 for 
z > h

θ
, but the uniform cooling takes place, i.e., 

∂θm/∂z = const < 0. In Fig. 2c the profiles of θ(z) are shown 

for t
0
 = 20 h, LT (curve 1) and t

0
 = 4 h, LT of the next day 

(curve 2). Solid curves correspond to the case of the constant 
temperature above h

θ
, dashed curves to the uniform cooling 

with the rate ∂θm/∂t = – 0.5 K/h (the curves coincide at the 

time t
0
). The heights with ∂θ/∂z = 0, i.e., the boundaries of 

the ground θ–inversion at the given time are indicated by 
crosses. We can compare different h

θ
 under these conditions 

using the family of curves 1 shown in Fig. 2d (notation of 
curves are the same as in Fig. 2c). The family of curves 2 
corresponds to the case of h

θ
(t

0
) = 50 m for other parameters 

being the same as in the basic set. As can be seen from 
Fig. 2d, the cooling processes above the inversion can lead to 
the noticeable variations in its height. 

Super–adiabatic temperature distribution above the θ–
inversion also affects the variation of h

θ
, though in a smaller 

extent. As an example, the model profiles of θ(z) are shown in 
Fig. 2c by dot–dash curve at the times t

0
 = 20 h, LT (curve 

1) and t
0
 = 4 h, LT (curve 2) with the following changes in 

the basic set of the parameters: ∂θm/∂t = – 0.5 K/h and 

∂γ/∂t = 0, i.e., under condition of uniform cooling above h
θ
 

and constant gradient of the potential temperature 
γ = 0.61 K/100 m. The evolution of the height h

θ
 in this case 

is shown by dot–dash line in the family of curves 1 in 
Fig. 2d. The family of curves 2 at h

θ
(t

0
) = 50 m also 

comprises dot–dash curve corresponding to the examined case. 
Finally it should be noted that the height 

distribution of the radiative heat influxes (sinks) may 
have an appreciable effect on the behavior of the ground 
radiative inversion. The variations in h

θ
 in this case are 

comparable and sometimes exceed the variations attendant 
to the changes in the other parameters and functions. In 
this paper we had no goal to perform the exhaustive 
modeling of the evolution of the ground inversion height 
and only wanted to underline the necessity of taking into 
account the possible nonlinearity of the height 
distribution of radiative cooling of the atmosphere in 
modeling. More detailed analysis of complicated time 
dependences of such quantities as the underlying surface 
temperature, turbulent heat flux, temperature gradient 
above inversion, and the like, can be made, for example, 
when solving Eq. (6). 
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