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The possibility of the application of the optimum Markovian filtration to lidar 
sounding by the differential absorption (DA) method is shown on the basis of the 
Markovian model of the altitude fluctuations of the gas concentration smoothed by the 
lidar pulse. The algorithms for optimum estimation of the fluctuating profile of the gas 
concentration and its variance are found. The efficiency is analyzed by the numerical 
simulation method for four hypothetic lidars with the acceptable power as applied to 
the ozone sounding in the Hartley and Higgins bands. 

 
Introduction. Stochasticity of the fields of optical and 

physical atmospheric parameters and the short noise 
fluctuations in the optical detection channel of the lidar 
receiver essentially limit the sounding efficiency, i.e., the set 
of the accuracy characteristics and spatiotemporal resolutions. 
But the requirements of concrete applications, in particular, 
the determination of the ozone concentration profiles by the 
differential absorption (DA) method to the quality of the lidar 
data are continually raising. For this reason the idea of 
applying the nonlinear Markovian filtration of lidar signals 
proposed and developed in Refs. 1–3 is fruitful. Such a 
technique of processing improves the efficiency of sounding of 
the fluctuating profiles of optical and physical parameters due 
to the use of the a priori data on their statistical structure. 

This elaboration was continued in Refs. 4–7 as applied 
to lidar sounding of thermodynamic atmospheric parameters, 
in Refs. 8 and 9 – to lidar sounding of aerosol, in Ref. 10 –– 
to measurement of the gas content along the paths, and in 
Refs. 11 and 12 – to the temporal filtration of lidar returns. 

In this paper the nonlinear Markovian filtration is used 
for the optimum separation of the gas concentration profile as 
applied to ozone sounding by the DA method, and the 
calculations are made in the Hartley and Higgins bands. 

Physical premises. Let us consider a ground–based 
monostatic lidar with normalized power function f(τ) 
operating at the wavelength λ and sounding the atmosphere in 
the altitude range [h0, hmax]. The power Ps(h) of the signal 

component at the detector input in the single scattering 
approximation at the distance h is determined by the lidar 
equation13 

 

Ps(h) = χ1E0Sa ⌡⌠
0

h

 dh′f[2(h – h′)/c] β
∼
(h′) Y

∼

a
2(0, h′) × 

 

× Y
~

R
2(0, h′) Y

~
g
2(0, h′)/ (h′)2 , (1) 

 

where χ1 is the total efficiency of the optical train; E0 is the 

radiated pulse power; Sa is the efficient area of the receiving 

aperture; Y
∼

a, Y
∼

R, and Y
∼

g are the transmission functions 

associated with aerosol and molecular scattering and gas 

absorption, respectively; c is the speed of light; β
∼
(h) is the 

profile of aerosol and molecular backscattering coefficient; 
τ = 2h/c; and, tilde denotes the true profiles. 

To describe the shape of the true pulses one can use 
the following time dependence:13 

 

f(τ; m) = 
(τ/τ0)

m-1

τ0Γ(m)
 exp{– τ/τ0} , (2) 

 

where m = 1, 2... and τ0 > 0 are the parameters and Γ(m) is 

the gamma function. 
Let us define the efficient sounding pulsewidth as τp = f–

1(τmax; m). 

Since Ps(h) is caused by backscattering in the efficient 

altitude range [h – L, h], where L = cτp/2, we can neglect 

the variations in the factor 1/(h′)2 and Y
∼

a
2 and Y

∼

R
2 under the 

integral sign in Eq. (1) given that L � h. Let us assume that 

the profiles of aerosol and molecular backscattering can be 
deterministic during one sounding run, but unknown altitude 
functions. In this case smoothing over the sliding interval  

[h – L, h] significantly change only the profile Y
∼

g(0, h) and 

related with it the vertical profiles of concentration and gas 
absortion characteristics. As a result, we can write Eq. (1) in 
the following form: 

 

Ps(h) = χ1E0Sa h
–2 

c
2 β(h) Ya

2(0, h) YR
2(0, h) J(h) , (3) 

 

J(h) = 
2
c ⌡⌠

0

h

 dh′f[2(h – h′)/c] Y
∼

a
2(0, h′) . (4) 

 
Following the approach of Refs. 14 and 15, let us 

consider the models for the fluctuating parameters, which have 
such stochastic properties that their dependence on time or 
distance must be described by realization of a random process. 

Let us represent the random values of the concentration N
∼
(h) 

in the form of N
∼
(h) = N

–
(h) + ΔN

∼
(h), where the bar denotes 

ensemble averaging. 

Let us expand Y
∼

g
2(0, h) in the Taylor series in the profile 

ΔN
∼
(h) around the vertical profile smoothed by the sounding 

pulse  
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ΔN(h; m) = 
2
c ⌡⌠

0

h

 dh′f[2(h – h′)/c; m] ΔN
∼
(h′) . (5) 

 

As the profiles ΔN
∼
(h) and ΔN(h; m) are close in 

values, for functional (4) the following approximation: 
 

J(h) g Y
–

g
2(0, h) exp 

⎩
⎨
⎧

⎭
⎬
⎫

– 2 ⌡⌠
0

h

 dh′ σg(h′) ΔN(h′; m)   

 
is valid where σg(h) is the gas absorptional cross section,  

Y
–

g(0, h) is the transmission associated with the absorption by 

the gas molecules with average concentration N(h). Thus, the 

fluctuations ΔPs(h) = Ps(h) – P
–

s(h) and ΔN(h; m) are related 

nonlinearly, while ΔN(h; m) is the profile of natural 

fluctuations of the concentration ΔN
∼
(h) efficiently smoothed 

according to Eq. (5) over the sliding interval L. 
Model of signals and noise. Let us study the statistical 

structure of the process ΔN(h, m). To this end, let us define 
ΔN(h; m) in terms of the variable ηm(τ) of the state in the 

form ΔN(h; m) = σ[ΔN(h; m)] ηm(τ), where σ2[ΔN(h; m)] is 

the variance of the fluctuations of the concentration smoothed 
according to Eq. (5), and let us differentiate Eq. (5) m times. 
Combining the state variables ηj, where 1 ≤ j ≤ m, to the state 

vector η = {η1, η2, ..., ηm}T, we can write the stochastic 

differential equation (SDE) of the following form: 
 

η(τ) = Aη(τ) + w(τ) . (6) 
 
It is convenient to represent the matrix of coefficients A as 

 

A = α0 

-1                  0 0  ... 0 0

 1 -1 0  ... 0 0

 0 . . . ... . .

 0 0 0  ... 1 -1

, 

 
where α0 = 1/τ0 and ω(τ) = {ω1(τ), 0, ..., 0}T is the  

m–dimensional vector. Its nonzero component ω1(τ) is the 

white Gaussian noise with the correlation function15 

< ω1(τ) ω1(τ′) > = W1/2δ(τ – τ′), when L0 = cτ0/2 � hn
k, 

where hn
k is the spatial correlation length of the 

concentration fluctuations ΔN
∼
(h) without smoothing. By 

virtue of the central limit theorem, ΔN(h; m) and 
consequently ηm(τ) are approximately Gaussian functions 

regardless of the distribution ΔN
∼
(h) for L � hn

k. It is natural 

that when the fluctuations ΔN
∼
(h) without smoothing are 

Gaussian, the distribution function of the fluctuations 
ΔN(h; m) linearly related to them is also Gaussian for any L. 

Particulary, the result of processing of the radiosonde 
data cannot characterize the form of the concentration 

distribution ΔN
∼
(h) O3 after significant temporal and spatial 

smoothing. However, the prevalence of normal and lognormal 
distributions in all measurements16 enables us to expect that 
the distribution of fluctuations ΔN(h, m) of the concentration  

of O3 is close to normal at small time intervals. Thus, for 

m = 1 ηm(τ) = η1(τ) is the Gaussian Markovian process 

while for m ≠ 1 ηm(τ) is fitted by the component of the m–

dimensional Markovian process. 
For the monostatic lidar with the receiver operating in 

the sounded altitude range in the linear detection regime the 
condition of the weak coherent selection14 is realized in most 
cases. This fact makes it possible to apply the approximate 
asymptotically exact distributions of the number of 
photoelectrons. Particulary, for a prescribed realization of the 
power profile Ps(h) the distribution of the signal 

photoelectrons for the given time interval Δτ is the Poisson 
one. Resultant distribution of the external and internal noise 
photoelectrons caused by the background radiation and the 
dark current of the photodetector, is also the Poisson one. 

Assuming the backscattering intensity to be the 
random function of τ, we will obtain the doubly stochastic 
Poisson process at the output from the photodetector whose 
conditional intensity averaged over the ensemble of short 
noise fluctuations is modulated by the vector process η(τ). 

As a result, the total intensity function is given in the 
form: 
 

ν
Σ
(τ; η)=ν

–
s(τ)exp

⎩
⎨
⎧

⎭
⎬
⎫

– 2 ⌡⌠
0

h

 dh′ γ
–

(h′) μ(h′) ηm(h′) + νN, (7) 

 
where  
 

ν
–

s(τ) = χ
R
E0Sa h

–2 β(h) 
c
2 Y

–
Σ

2(0, h)/hν (8) 

 
is the function of the intensity of signal photoelectrons with 
an account of the gas absorption for the average absorption 

coefficient γ
–

(h); μ(h) is the coefficient of gas concentration 
variations at the altitude h;  

Y
–

Σ
(0; h) = YaYRexp{–

⌡⌠
0

h

dh′ γ
–

(h′)}; χ
Σ
 = χph χ1; χph is the 

quantum efficiency of the photodetector; νN = [χphPbg + νd] is 

the total density of the dark photoelectrons with the intensity 
νd 

and the background photoelectrons, where Pbg is the power 

of the background radiation incident on the receiving aperture. 
According to the classification of the photodetection 

regimes introduced in Ref. 14, for the photon counting mode, 

the average total intensity ν
–

Σ
(τ) = ν

–
s(τ) + νN must satisfy the 

condition 
 

ν
–

Σ
(2h/c) ≤ –lnq/τsp , (9) 

 
where q is the threshold value of the dip probability, 

τsp = τg + τbg is the efficient single–electron pulsewidth, 

τg is the time constant of the photodetector, τbg = 1/2Π, Π 

is the bandwidth of the postdetector filter. 
Filtration equation. Let μ(h) = μ0 = const in the 

sounded altitude range. Let us introduce the state variable 
ηm+1(τ), for which the SDE has the form 

 

ηm+1 = c γ
–

(h) ηm(τ)/2 . (10) 
 

In this case the fluctuations Δτ(0, h) of the optical 
depth can be written down in terms of ηm+1(τ) as  
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Δτ(0, h) = μ0ηm+1(τ), and the intensity of signal 

photoelectrons can be determined in terms of the generalized 
state vector η0 = {η1, ηm+1}

T, using Eq. (7), we obtain 
 

νs(τ; η) = ν
–

s(τ) exp{– CT
η0} , (11) 

 
where C = {0, – 2μ0}

T. In the linear state space the 

generalized vector η0(τ) satisfies the SDE in the form of 

formula (6) with the matrix of coefficients 
 

A0 = ⎝
⎛

⎠
⎞ A  0

c γ
–

(h)/2 0
 

 
and (m + 1)–dimensional Gaussian noise ω0(τ) = {ω(τ), 0}T 

with the matrix b0 = {b0ij} of the bilateral spectral power 

densities, where b0ij = 0 for (i, j) ≠ (1, 1) and b011 = 2α0. 

By virtue of the above–given relations, ΔN(h) and 
νs(τ, η0) are determined uniquely in terms of η0. The 

problem is the optimum estimate of the realization η0(cτ/2) 

from the input data. In the photon counting photodetection 
mode the sequence of the random numbers of photoelectrons 
 
n

Σ
(τ; Δτ) = ns(τ; Δτ) + nbg(Δτ) (12) 

 
is the sampling data of the doubly stochastic Poisson 
process N(τ; η0) with the intensity function νs(τ, η0). Let us 

find the processing algorithm for the population n
Σ
(τ, Δτ) 

which provides the optimum estimate η*0 of the maximum of 

the a posteriori probability density. 
The a priori probability density W0(η0) related to the 

Markovian vector process η0(τ) at the moment τ satisfies the 

equation in partial derivatives of the second order, which is 
well known as the Fokker–Planck–Kolmogorov equation 
(FPK)17 
 

∂W0(η0)

∂τ
 = Lpr{W0(η0)} , 

 

where Lpr is the a priori FPK operator, whose drift 

coefficient η0 is the linear function of η0 and the diffusion 

coefficient is independent of it. Following Refs. 18 and 19, 
we can describe the evolution or the a posteriori probability 
density (APD) of the Markovian process, which modulate 
the intensity function of the inhomogeneous Poisson 
process. According to Refs. 18 and 19, for the APD 
W(η0/N(τ)) of the state vector η0(τ) we have the relation  

 

dW(η0/N(τ)) = Lpr[W(η0/N(τ))]dτ + W(η0/N(τ)) × 
 

× [ν(τ; η0) – ν
–

] ν
––1(τ; η0) [dN(τ) – ν

–
(τ; η0)dτ] , (13) 

 

where ν
–

(τ, η0) is the conditional estimate of the intensity 

function and dN(τ) is the increment to the Poisson process 
N(τ). The Kolmogorov–Feller equation (13) is the main result 
solving the problem of filtration of η0 for observation of the 

doubly stochastic Poisson process N(τ; η0). The direct way of 

solving Eq. (13), as a rule, appears to be irrational.18,19 
Therefore, it is more expedient to apply Eq. (13) in various 
approximate algorithms capable of obtaining the estimate of 
the process η0(τ) without direct solution of Eq. (13). The  

parametrization of the APD is one of the natural approaches to 
the development of the approximate algorithms. Particulary, 
for the Gaussian approximation of the APD the optimum 
estimate can be obtained by means of the solution of the 
system of SDE of the quasioptimum nonlinear filtration for 
the conditional average η*0 and the correlation matrix 

K = <(η0 – η*0)(η0 – η*0)
T> (see Ref. 18). However, in view of 

the fact that the practical implementation of the estimate η0(τ) 

in the general case is difficult, let us restrict ourselves only to 
the Calman–Bucy filtration, when we can linearize Eq. (11) 
in η0. Equations for the quasioptimum linear filtration have 

the form19 
 

dη0* = A0(h)η0dτ + 
KC

ν
–

Σ
(τ)

[dN(τ) – ν
–

Σ
(τ)dτ – CT

η0*dτ] , (14) 

 

K = A0(h)K + KAT(h) + b0 – KCCTK/ν
–

Σ
(τ) (15) 

 

with the initial conditions η*(τ0) = 0; Kmm(τ0) = 1; 

Kij(τ0) = 0 for (i, j) ≠ (m, m). 

The optimum processing includes a simultaneous 
solution of the system of Eqs. (14) and (15) as the input 

data n
R
(τ, Δτ) come given that the profiles N

–
(h), L0, ν

–
Σ
(τ), 

etc. are determined a priori with the above–indicated 
initial conditions by a suitable finite–difference method. 
The recurrent finite–difference solution of this system of 
equations yields the optimum estimate η*0m thereby giving 

the estimate of the profile N(h) 
 

N*(h)
 
=
 
N
–

(h) [1 + μ0η0m* (τ)] , (16) 

 

and the estimate Kmm(τ) of the variance for the 

realization η*0m(τ) thereby giving the variance 

D[N*(h)] = μ2
0N
–2(h)Kmm(τ) of the profile N*(h). 

The necessity for determining the average profiles of  

N
–

(h) and n
–

R
(τ) a priori is caused by the fact that the 

statistical structure of the profiles, which forms the basis for 
the optimization of data processing, is determined for the 
fluctuations rather than for the average profiles. The most 
natural way of estimating the average profiles is to include 
without optimization the parallel channel of the postdetection 
processing into the receiver. Resulting from spatiotemporal 
smoothing in this channel, the variations of the estimates 
caused by the gas concentration fluctuations are smoothed, 
and the estimate accuracy is quite sufficient for its application 
as an average profile. 

Let us explain the application of the Calman–Bucy 
filtration algorithm (14) and (15) in different variants of the 
DA method as applied to sounding in the Hartley and Higgins 
absorption bands. As a rule, two wavelengths are used: the 
short one corresponds to the strong absorption while the long 
one – to the weak absorption. In order to estimate the 
efficiency of the Markovian filtration let us consider the 
practically realizable situation, when one wavelength lies in 
the Hartley and Higgins bands while the required data on the 
elastic scattering characteristics are estimated from the data of 
simultaneous sounding in the visible (λ = 532 nm) and near–
UV (λ = 351 and 353 nm) wavelength ranges, in which the 
ozone absorption is negligible. 

Then we can use only the linear part of the expansion 
νs(τ; η0) in a power series of ηm+1, if the condition 
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2 Δτ(h0, h)] 1/2 g 2µ0 ⌡⌠
h0

h

 dh′ γ
–

(h′) � 1 (17) 

 

is satisfied. 
Analysis of the filtration efficiency. Let us consider 

the altitude dependence of the variance of the ozone 
concentration estimate as the figure of merit of the 
filtration. According to Eq. (16) 
 

D[N*(h)] = μ0
2N
–2(h) D{η0m* (h)} , (18) 

 

where D{η*0m(h)} = Kmm(h) is the corresponding diagonal 

element of the matrix K satisfying the dispersive equation 
(15). In turn, we can obtain the relation for Kmm(h) from 

Eq. (18) in the form 
 

Kmm(h) = 
D[N*(h)]
D[N(h)]  , 

 

since D[N(h)] = μ2
0N
–2(h). Thus, Kmm(h) is the ratio of the 

a posteriori variance of the estimate N*(h) to the a priori 
variance of the fluctuating profile N(h) of the gas 
concentration.  

It is convenient to elucidate the main features of the 
dynamics of the filtration efficiency with the use of one of 
realizable simple models of the concentration fluctuations 
ΔN(h) smoothed by the sounding pulse, particulary, for the 
exponential shape of the sounding pulse (m = 1) and two–
dimensional vector η0 = {η1, η2}

T. According to Eq. (15), 

the elements of the correlation matrix K satisfy the 
following system of differential equations: 
 

⎩
⎪
⎨
⎪
⎧

dK11(h)

dh  = – 

2
L0

 K11(h) + 

2
L0

 – 

4ν
–

s
2(h) μ0

2

ν
–

Σ
(h)

 K12
2 (h);  

dK12(h)

dh  = – 

2
L0

 K12(h) + γ
–

(h) K11(h) – 

4ν
–

s
2(h) μ0

2

ν
–

Σ
(h)

 K12(h) K22(h) ;

dK22(h)

dh  = γ
–

(h) K12(h) – 

4ν
–

s
2(h) μ0

2

ν
–

Σ
(h)

 K22(h) ,  

 

 (19) 
where the altitude h = cτ/2 is an independent variable; 
therefore, the profiles of relative variances K11(h) and K22(h) 

characterize the filtration efficiency and its altitude 
dependence. 

Taking into account the complicated dependence of ν
–

s(h) 

and ν
–

Σ
(h) on h we cannot expect the exhaustive analytical 

study of the dependences K11(h), K12(h), and K22(h). To do 

this, it is necessary to model the profiles ν
–

s(h) and ν
–

N taking 

into account all factors accompanying the sounding of O3 in 

the UV range and then to make the numerical integration of 
Eq. (19). 

We can obtain the vertical dependence K11(h) by 

replacing K12(h) in the first equation of the system of 

equations (19) by its approximation  
 

K
~

12(h) g γ
–

(h) L0 K11(h)  
 

which is obtained for L0 � h – h0. In this case we can 

integrate the relation for K11(h) independently of all the other 

relations of the system of equations (19). As a result, we have  
 
dK11(h)

dh  = – 
2
L0

 K11(h) + 
2
L0

 – 
2
L0

 Q(h; λ) K11
2 (h) , (20) 

 
where 
 

Q(h; λ) = 
2ν
–

s
2(h) μ0

2L0

ν
–

Σ
(h)

 [ γ
–

(h)L0]
2 . (21) 

 
Let us term the value Q(h, λ) which, as it is 

mentioned below, determines to a large extent the filtration 
efficiency in the sounded altitude range the generalized 
signal–to–noise ratio, in analogy with Refs. 12, 14, and 15 
as applied to the one– and two–channel filtration of lidar 
signals of the elastic scattering. It can be seen that Q(h; λ) 
in the form of formula (21) differs from the ratio Q(h) 
introduced in Refs. 2 and 15 by the factor  

 

τ
–

O3
(0, L0) = γ

–
(h)L0  

 
which takes into account the ozone absorption at the 
interval L0 determining the spatial resolution of the lidar. 

The qualitative character of the K11(h) behavior in 

different sounding variants is the same:15 fast decrease from 

the initial value K11(h0) = 1 down to a fixed value K
–

11 (the 

transient regime), then much slower increase with the 
asymptotical approach to K11(∞) = 1. The approximate 

analytical study of Eq. (20) yields the duration of the 
transient process  

 
h – h0 g {2Q(h0; λ)}–1 . 

 

Since the spatial scale of variation of the profiles ν
–

s(h) 

and γ
–

(h; λ) is, as a rule, much greater than L0, we can find 

the so–called quasistationary solution of Eq. (20). To this 
end, let us set dK11(h)/dh = 0 and write down the solution  

K
–

11(h) of the quadratic equation in K
–

11(h) in the form 

 

K
–

11(h) = 
1

2Q(h; λ)
 { 1 + 4Q(h; λ) – 1} . (22) 

 

If Q(h, λ) � 0.25, then K
–

11(h) g {Q(h, λ)}–0.5. It can be 

seen from Eq. (22) that Q(h, λ) is the most important 
parameter determining the filtration efficiency. To analyze the 
vertical profile and spectral behavior of Q(h, λ), we calculated 
the profiles Q(h, λ) at the given wavelengths of a Kr–F 
excimer laser with cells filled with H2 and D2 and of the  

Xe–Cl and Xe–Br excimer lasers with real lidar parameters. 
We can conclude from the results of calculations of Q(h, λ) 
that the multipulse sounding during one measurement run 

must be done in order to provide Q(h; λ) � 1. 

It is evident that the optimum filtration makes sense 

only for those altitudes at which K11(h) � 1, since the  
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a priori determined profile N
–

(h) can be considered as a trivial 
estimate of the realization N(h) with the variance being equal 
to D[N(h)], i.e., with K11(h) = 1. It can be seen from 

Eq. (22) that K
–

11(h) is inversely proportional to Q(h; λ); 

therefore, for optimum filtration the inequality Q(h; λ) � 1 

must be satisfied. 
Four hypothetic lidars with the parameters given in 

Tables I and Π = 5⋅107 Hz and ν
δ
 = 102 s–1 operating at night, 

were chosen as an example for calculating the sounding 
efficiency. 

The dependences Q(h; λ) for L0 = 300 m averaged over 

M = 104 sounding runs were calculated using the Elterman 
model of aerosol scattering20 and taking into account the 
ozone absorption in the Hartley and Higgins bands at the 
laser wavelengths of the lidars A–D that corresponds, for 
example, to the sensing period Δts = 200 s given that the 

sounding pulse repetition frequency fr = 50 Hz. The vertical 

profile K11(h) calculated from Eq. (22) in the case of 

sounding with the lidars A – D are shown in Fig.1.  
 

TABLE I. Parameters of hypothetic lidars 
 

Lidar A B C D 

λ, νm 282 291.6 308 313 
Laser XeBr Kr–F+D2

2
 XeCl Kr–F+H2

2
 

E0, J 0.1 0.057 0.4 0.095 

Sa, m
2
 0.785 0.785 0.785 0.785 

χph 
0.2 0.2 0.2 0.2 

χ1 9.35⋅10–2
 1.02⋅10–1

 1.15⋅10–1
 1.15⋅10–1

 

 

 
 

FIG. 1. Profiles of the efficiency of filtration of the ozone 
concentration for lidar sounding at the wavelengths 
λ = 282 nm (1), 291.6 nm (2), 313 nm (3), and 308 nm (4). 
 

For the above–indicated lidar parameters, the spatial 
filtration is efficient up to the altitudes of 9, 12, 16, and 
20 km, respectively, for the lidars A–D, while above these 
altitudes the sounding is inefficient from the standpoint of 
the sensitivity of the DA method to the absorption optical 
depth of the atmospheric column and the accuracy of the 
estimate of the fluctuating ozone concentration. 

We can obtain the smaller values of K11(h) by means 

of deterioration of the spatiotemporal resolution, thereby 
increasing the accuracy of the estimate N*(h) of the ozone 
concentration N(h) according to Eq. (18), or the sensing 
range with the acceptable accuracy. 

 

Conclusion. Thus, the Markovian model of the gas 
concentration fluctuations smoothed in the course of 
sounding by the DA method is substantiated. The 
algorithms for the lidar signal processing in the photon–
counting detection mode are found. It is shown that the 
efficiency of filtration of the fluctuating gas 
concentration profile depends on the generalized signal–
to–noise ratio introduced in the paper. This approach is 
easily generalized for the case of sounding of other gases 
by the DA method both in the bands and lines of 
absorption. 

Authors would like to thank A.I. Popkov for his 
help in performing calculations. 
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