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Based on the modified method of motion equations taking into account the most 

important polarization effects, including the so–called two–particle–hole interactions 
the spectroscopic data on energies and strength of transition oscillators in the nitrogen 
molecule spectrum correcting earlier experimental and theoretical results have been 
obtained using the technique developed and tested in the previous papers. 
 

The calculational results of spectroscopic 
characteristics are presented in this paper. They are the 
probabilities, strengths of oscillators, and energies of 
transitions in the nitrogen molecular spectrum which refine 
the theoretical and experimental data obtained earlier. The 
calculation was carried out based on the method of motion 
equations, the important polarization effects being 
effectively taken into account using the technique proposed 
and tested earlier. The presented data, some of which 
(oscillator strengths of the transitions X1∑+

g → b1∏u and 

X1∑+
g → b′1∑+

u, etc.) have been obtained more or less 

accurately for the first time, can be used in some 
applications including atmospheric optics.  

Introduction. As is well known, nitrogen is one of 
the basic components of the Earth's atmosphere. The N2 

molecular spectrum is of great interest, in particular, in 
studying the processes in the upper atmospheric layers in 
which the excited and ionized N2 molecules (together 

with oxygen molecules) play an important role.1,2 Thus 
the first positive and first negative systems are observed 
in the spectra of the upper atmospheric air glow. The first 
and second positive systems of the N2 bands and the first 

negative system of the N+
2 bands occur in the aurora 

spectra. Although the nitrogen molecule has been studied 
in a great number of papers,3–16 some spectroscopic 
parameters of this molecule have not been reliably 
established thus far, and some of them have been justified 
only theoretically and, unfortunately, they have not been 
experimentally verified. In particular, this is true with 
the oscillator strengths of transitions related to the bands 
of Geidone–Hermann (X1∑+

g – b1∏u), Bersger–Hopfield 

(X1∑+
g → b′1∑+

u, etc.  

The most comprehensive study of the spectroscopic 
characteristics of the nitrogen molecule has evidently been 
done by Gilmore.5,6 The detailed review of the papers 
devoted to nitrogen spectroscopy is given in Ref. 12. A 
series of papers7–11,13,14 deals with calculations of potential 
curves, energy levels mainly of low–lying configurations of 
N2 based on the methods of motion equations and the 

method of a model potential, as well as using the Hartree–
Fock approximation that takes into account the 
configuration interaction. From the standpoint of taking 
into account the correlation that strongly contributes to 
energy characteristics of N2, this molecule is related to the 

sufficiently complicated ones. As known, the correlation  

effects are taken into accoint in the most accurate way 
either in a very complete approximation of configuration 
interaction, which is, as a rule, an extremely cumbersome 
and complicated problem, or within the framework of 
semiempirical models. In the latter case, however, one must 
be careful when interpreting the obtained data. In the 
recent paper14 the second positive system of nitrogen was 
calculated using a semiempirical method. The electron 
transition a1∏g – X1∑+

g, as well as the lifetime of this state 

were, apparently, measured and calculated in the latest 
papers concerned with the N2 molecule.13,14 In this paper 

the calculational results are given on the energy and 
strengths of oscillators of the electron transitions in the 
nitrogen molecule spectrum, which correct to a certain 
extent the theoretical and experimental spectroscopic data 
available. In particular, we have obtained new values of 
oscillator strengths for the electron transitions X1∑ → b1∏u, 

X1∑+
g – b′1∑+

u. The calculation was carried out using a 

modified method of motion equations, which differs from 
the standard method of motion equations developed by 
McKoy, et al.17–19 by the technique used for taking into 
account for the two–particle–hole polarization interactions. 
The effects related to these interactions can, e.g., contribute 
to energies of the electron transitions up to 3 eV and to 
~ 30 % to the strengths of oscillators. As is well known, the 
theoretical determination of potential curves, energies, and 
probabilities of electron transitions in molecules requires 
that the preliminary calculations of wave functions and 
total energies of molecular states be made with a maximum 
attainable accuracy that naturally demands the adequate, 
and sometimes very substantial calculational efforts. In this 
respect, the method of motion equations seems to be a 
reliable alternative for the conventional quantum chemical 
methods.8–10 A specific feature of this method is the 
possibility of directly calculating the amplitudes of different 
processes, including photon absorption, etc., avoiding the 
problems associated with calculations of wave functions and 
total molecular energies. Naturally, the method does not 
provide for absolute accuracy as, e.g., the known limiting 
versions of variational solution of the problem do, 
nevertheless it is sufficiently effective for calculating 
frequencies and probabilities of transitions in molecules. As 
shown, in Refs. 17–19, to attain the acceptable accuracy of 
calculations it is possible to employ the bases of orbitals 
sufficiently limited in volume. However, in this case such 
important effects as "pressure of continuum," energy 
dependence of the self–consistent field potential, the effects  
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related to the so–called 2p – 2h (two particles – two 
holes) polarization interactions must be taken into account 
(see Refs. 18–23 and 24 and 25). The account for these 
effects based on the standard technique18,24 strongly 
complicates the calculations. In Refs. 20, 21 within the 
framework of the density functional formalism22,23 the 
effective procedure for taking into account the foregoing 
effects was developed by employing the energy–dependent 
exchange–polarization functionals. By way of example the 
spectra of the excited states, frequencies, and strengths of 
oscillators of the transition in molecules of benzol and 
formaldehyde were calculated to demonstrate the efficiency 
of the method. We shall give only a brief description of 
some principal stages of the calculations. 

Method of calculation. According to Refs. 17 and 18, 
the operator Q+

λ
 generating the excited state |λ> of a 

molecule from the ground state |O>, i.e., |λ> = Q+
λ
|O>, is 

the exact solution of the motion equation  
 

<0⏐[δQ
λ
, H, Q

λ
+]⏐0> = ω

λ
<0⏐[δQ

λ
, Q

λ
+]⏐0> , (1) 

 

where ω
λ
 is the transition frequency and a double 

commutator is determined as  
 

2[A, H, B] = [A, [H, B]] + [[A, H], B] . (2) 
 

Taking into account the excitations of the type of 
one particle – one hole |1p – 1h| in Eq. (1), Eq. (1) can 
be reduced to a matrix equation for the amplitudes {Ymγ

} 

and {Zmγ
}: 

 

[ ] A   B 
– B* – A*  [ ]Y(l)

Z(l)  = ω
λ
 [ ]D 0

0 D  [ ]Y(l)
Z(l)  , (3) 

 

where the matrix elements A, B and D read  
 

Amγnδ = <0⏐[Cmγ
, H, Cnδ

+ ]⏐0> ; 
 

Bmγnδ = <0⏐[Cmγ
, H, Cnδ]⏐0> ; (4) 

 

Dmγnδ = <0⏐[Cmγ
, Cnδ

+ ]⏐0> , 
 

and C+ is a partially hole generator (C is the one of 
annihilation), the indices m and n stands here for particles 
states, γ and σ denote the hole states, H is the molecular 
Hamiltonian in the representation of the second 
quantization. To estimate the matrix elements4 the 
approximated wave function of the ground state is written 
in the form17  

 
⏐0> ≈ N0(1 + U) ⏐HF> , (5) 

 

where U = 
1
2 ∑
m
γ
nδ

CmγnδCmγ
+ Cnδ

+ , ⎢HF>  

 
is the Hartree–Fock function.  

Taking this definition into account the elements A, B 
and D take the forms  

 

Amγnδ = Amγnδ
0   + δ

γδ
 [ ]Tmn – 

1
2 (εm + εn – 2ε

γ
) ρmn

(2)  – 

 

– δmn [ ]T
γδ
 – 

1
2 (2εm – ε

γ
 – ε

δ
) ρ

γδ
(2)  ; 

Bmγnδ = Bmγnδ
(0)  + (– 1)λSmγnδ , 

 
Dmγnδ = δmn δγδ + δmn ρ γγ

(2) – δ
γδ ρmn

(2) . (6) 

 
Here A0 and B0 are standard matrices of the random 

phase approximation18 and the other terms in Eq. (6) are 
 

Smγnδ = – ∑
ρμ

 {Vmμδρ
 c

ρμnγ + c
ρμmδ

 Vnμγρ} ;  

 

T
γδ
 = 

1
2 ∑

pqν

 {Vpqγν cpδqν*   + V
δνpq cpγqν} ; (7) 

 

Tmn = – 
1
2 ∑

qμν

 {Vmqμν cnμqν*   + V
μνnq cmμqν} ; 

 
and then 

 
Vijkl = <i(1) j(2)⏐r12

–1 k(1) l(2)⏐> . (8) 
 

In Eqs. (6)–(8) the indices p and q as well as m and n 
are related to the particle states and μ and ν as well as γ 
and δ are related to the hole ones. The values εm and ε

γ
, etc. 

in Eq. (6) determine the Hartree–Fock orbital energies, ρ(2)
mn 

and ρ(2)
δγ

 are the corrections to the second–order density 

matrix depending quadratically on correlation coefficients. 
If the correlation coefficients are neglected, the matrix 
elements of Eq. (6) are reduced to the corresponding matrix 
elements of the random–phase approximation.18 Using this 
approximation the motion equations for determining the 
1p – 1h amplitudes {Y} and {Z} and the corresponding 
excitation energies are solved by the standard methods of 
matrix algebra. The approximation 1p – 1h in Eq. (1) being 
considered so far cannot, however, in most of the cases, 
provide sufficient accuracy in calculating spectroscopic 
characteristics of molecules.11 Although the most important 
low–lying excited states are related to the 1p – 1h pairs 
and, in the complete expansion of Q+

k, have the largest 

amplitudes, the components 2p – 2h, i.e., those doubly 
excited with respect to the ground molecular state of 
configuration, are also important and can contribute to the 
energy of transition, e.g., to ∼ 3 eV, (see Ref. 11). Their 
inclusion is relevant to the account for the self–consistent 
tuning of the hole orbitals during the virtual excitations in 
the frame of the basic molecular configuration. In this paper 
for the 2p – 2h effects to be taken into account we use the 
effective procedure developed in Ref. 20 which is based on 
the density functional formalism. The account of the 2p – 2h 
components in Q+

λ
 is equivalent to renormalization of 

matrices in Eq. (3) resulting in the ω dependence and, 
according to Refs. 22 and 23, is reduced to the appearance 
of the weight factor a(r) = [1 – ∑(r)]–1 in the matrix 
elements. In the density functional approximation the value 
∑(r) is defined as an electron density functional20  

 
Σ(r) = – 0.0834ρ1/3(r) – 0.0518ρ1/3(r)/[1 + 18.377ρ1/3(r)]. (9) 
 

It is difficult to calculate the matrix elements with the 
weighting factor a(r). The calculation can be significantly 
simplified, without loss of accuracy, by replacing a(r) by 
a(0) according to the well–known and justified procedure 
in the theory of atomic photoeffect25 which is based on 
approximation of random phases with exchange. It should  
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be noted now that the foregoing amplitudes {Ymγ
} and 

{Zmγ
} determine the moment of transition M0λ 

 

M0λ = 2 ∑
m
γ

 {Ymγ
* (λ) Mmλ

 + Zmγ
* (λ) Mmλ

} . (10) 

 
The oscillator strength of the transition ⎢0> – ⎢λ> is 

determined in terms of M0λ as follows:  

 

f0λ = 
2
3 Gω

λ M0λ
2  , (11) 

 
where G is the degeneration factor. The calculational 
scheme employed in this paper fully corresponds to that of 
the conventional motion–equations method, except for 
consideration of the 2p – 2h effects. Let us now represent 
calculational results on energies and oscillator strengths of 
the electron transitions in the nitrogen molecule.  

Calculational results. The electron configuration of 
the nitrogen molecule in the ground state is (1σg)

2 (1σu)
2 

(2σg)
2 (2σu)

2 (πux)
2 (πuy)

2 (3σg)
2. The geometry chosen for 

calculations is taken in accordance with the conventional 
experimental geometry of this molecule in the ground 
state.12 The first step is to conduct the Hartree–Fock 
calculation for generating the particle–hole basis. A self–
consistent calculation is carried out in the basis of Gaussian 
orbitals. We use the basis [4 s + 3 p] of contracted Gaussian 
orbitals completed with diffusion functions (the detailed 
description of the basis can be found, e.g., in Ref. 11). The 
particle and hole energy levels are given in Table I. Here 
the molecular orbitals 8–13 are the diffusion ones.  

 
TABLE I. Self–consistent molecular orbital energies in 
N2 (eV). 

 

No. MO ε
γ
 No. MO εm 

 1 1σg 
–15.7079 17 5σu 

 0.5869 

 2 1σu 
–15.7043 18 3πgx 

 0.6114 

 3 2σg 
 –1.5255 19 3πgy 

 0.6514 

 4 2σu 
 –0.7727 20 5σg 

 0.8602 

 5 πux 
 –0.6240 21 6σu 

 1.0232 

 6 πuy 
 –0.6240 22 7σu 

 1.5413 

 7 3σg 
 –0.6271 23 4πgx 

 1.6651 

 8 3σu 
 0.0257 24 4πgy 

 3.6651 

 9 1πgx 
 0.0910 25 3σux 

 3.0148 

10 1πgy 
 0.0910 26 3πuy 

 3.0148 

11 4σu 
 0.1632 27 8σu 

 3.0819 

12 2πgx 
 0.1654 28 6σg 

 3.3528 

13 2πgy 
 0.1654 29 5πgx 

 3.9962 

14 2πux 
 0.5320 30 5πgy 

 3.9962 

15 2πuy 
 0.5320 31 9σu 

33.2482 

16 4σ
γ
  0.5460 32 7σg 

33.5275 

 
Table II lists the values of energies of the excited 

states of the nitrogen molecule calculated in this paper and 
the results calculated using the method of motion equations 
in the 1p – 1h approximation and in the 2p – 2h 
approximation based on the technique taken from Ref. 11. 
The experimental data6,12 are also given in this table.  

 

TABLE II. Energies of excited states of the N2 molecule 

(eV).  
 

State ΔE(1p–1h) 
Ref. 11 

ΔE(1p–1h+2p–2h) 
Ref. 11 

ΔE(2p–2h) 
Our results 

ΔE 
experiment 

Ref. 12 

B3Πg 
 9.6  7.5  8.06  8.1 

a1Πg 
11.5  8.8  9.66  9.3 

A3Σu
+
 

 8.4  7.8  7.14  7.8 

B′3Σu
-
 

11.3 10.2  9.50  9.7 

W3Δu
10.1  9.4  8.59  8.9 

a1Σu
-
 

11.3 10.6  9.61  9.9 

ω1Δu 
12.0 11.0 10.20 10.3 

b′1Σu+ 16.8 15.0 14.28 14.4 

c1Σu
+
 

15.5 12.1 13.17 12.9 

C3Πu 
13.3 10.8 11.30 11.1 

b1Πu 
17.4 14.0 13.92 12.8 

 
It can be seen from the table that an account of 2p –

 2h interactions is needed in principle. The error in 
calculations within the framework of the 1p – 1h 
approximation, as can be seen from the comparison of the 
experimental and calculational values of transitions, attains 
∼ 20 %. The transition energies obtained in this paper are in 
a good agreement with those obtained experimentally. With 

the exception for the transition A3∑
+
u the error of 

calculating the sought–after energies, in comparison with 
experimental results, does not exceed several percent.  

As can be seen from the analysis, for the transition to 

A3∑
+
u the correction of the transition energy for 2p – 2h 

polarization effects turns out to be the smallest as compared 
to the remaining transitions. Consequently, the contribution 
of the 2p – 2h effect to this transition turns out to be 
overestimated. The largest correction of the transition 
energy for these effects is observed for the transitions to the 

states b1Πu and c′∑
1
u, a

1Πg. It is obvious that the technique 

for taking into account the 2p – 2h effects used in 
calculations for these transitions underestimates somewhat 
the sought–after effects.  

 

TABLE III. Oscillator strengths of the N2 molecule 

transition (see the text). 
 

Transition Ref. 11 Our results Experiment

X1Σg
+ – c′1Σu

+
 

0.11 0.10 0.14±0.04 

X1Σg
+ – b1Πu 

0.32 0.26 < 0.3 

X1Σg
+ – b′1Σu

+
 

0.49 0.39 0.83 

   0.40 
 

The 2p – 2h polarization interactions have been taken 
into account in the most effective way for the transitions to 

the states B3Πg, B′3∑
–
u, ω1Δu, b′1∑u and C3Πu and the 

obtained energies of the transitions to these states are in a 
good agreement with recommended expermental values. 
Table III lists the calculational results on the oscillator 
strengths for some transitions in the N2 molecule spectrum 

as well as the available theoretical estimates and 
experimental recommendations. The most comprehensive  
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information is available for the transition X1∑
+
g – c′1∑

+
u. The 

value of the oscillator strengths given in Ref. 11 for this 
transition are somewhat lower than those recommended from 
the experiment. The value f obtained in this paper is equal to 
0.10 and is also somewhat lower than the experimental ones. 
It should be noted that the spread of the experimental value is 

about 30 % for the transition X1∑
+
g – c′1∑

+
u. The other 

transitions under consideration, in particular, X1∑
+
g → b1Πu 

and X1∑
+
g → b′1∑

+
u, are sufficiently complicated. The matter is 

that, e.g., for the transition to b1Πu it is difficult to estimate 

the Franck–Condon factor. There occurs a strong disturbance 
of the levels of the b1Πu state by the c1Πu state. There is no 

experimental value of the oscillator strength for this 
transition, only the estimate f < 0.3 is available. The value of f 
obtained in this paper is equal to 0.26. However, for the 

transition X1∑
+
g – b′1∑u the values of the oscillator 

strengths do not agree. Rose et al.11 obtained the value 
0.49 for the oscillator strength of this transition without 
taking the value of the Franck–Condon factor into 
account. The value of f recommended in this paper is 
0.39. 
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