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The problem of reconstructing the laser beam intensity distribution from 
temperature distribution over the front surface of the target heated by the beam has 
been solved analytically. The dynamic relations have been derived for the 
instantaneous position of the intensity distribution centroid, size, and the functional of 
focusing with arbitrary boundary conditions on the back surface of the target. 

 
In the previous paper1 we proposed to reconstruct the 

beam intensity from the measurements of the temperature 
field T(ρ, t) of a heated surface to solve the problem of 
measuring the intensity distribution I(ρ, t) over the cross 
section of high–power laser beams. In general the 
multidimensional spatiotemporal inverse problem for 
thermal conductivity, to the solution of which the 
reconstruction problem was reduced in Ref. 1, was 
transformed to the one–dimensional problem by means of a 
choice of a one–dimensional target of a special 
configuration. In this paper we have obtained the analytical 
solutions of the three–dimensional spatiotemporal inverse 
problem for thermal conductivity, which is the problem of 
conversion of the boundary conditions. Unlike Ref. 1 the 
uniform plate was chosen as a target. The dynamic relations 
have been derived for reconstruction of the spatiotemporal 
intensity distribution, instantaneous position of the 
intensity distribution centroid, effective size, and functional 
of laser beam focusing for the arbitrary boundary conditions 
on the back side of the plate.  

Assuming the plate to be infinite in the transverse 
direction, we describe the process of heat transfer through the 
plate by the three–dimensional thermal conductivity equation 

 

∂
∂tT(ρ, z, t) = a2ΔT(ρ, z, t) ,  t > 0,  0 ≤ z ≤ L ,  

 

– ∞ < x, y < ∞ . (1) 
 

The boundary conditions on the front 
 

q(ρ, t) = k 
∂
∂zT(ρ, z, t)⏐z=L = 

 

= (1 – R) I(ρ, t) + ϑ T(ρ, t) – σbT4(ρ, t) ; (2) 
 

T(ρ, z; t)⏐z=L = T(ρ, t) (3) 
 

and back sides of the plate 
 

T(ρ, z; t)⏐z=0
 = 0 ; (4) 

 

k
∂T(ρ, z; t)

∂z z=0

 = 0 (5) 

 

are used in different combinations depending on the regime 
maintained on the back surface. Moreover, the relations 
 

T(± ∞, y, z; t) = T(x, ± ∞, z; t) = 0 , (6) 
 

 

∂
∂yT(x, ± ∞, z; t) = 

∂
∂xT(± ∞, y, z; t) = 0 (7) 

 

should be added to the boundary conditions. 
For simplicity, the initial distribution of temperature 

is assumed to be constant and equal to zero 
 

T(ρ, z; 0) = 0 .  (8) 

In formulas (1) and (2) Δ = Δ
⊥
 + 

∂2

∂z2,  

where Δ
⊥
 = 

∂2

∂x2 + 
∂2

∂y2 is the transverse Laplacian operator; v, 

k, and a2 are the coefficients of the convective heat transfer, 
thermal conductivity, and thermal diffusivity, respectively; σ 
is the Stefan–Boltzmann constant; b is the emittance; and, R 
is the reflectance of the plate surface. 

Let us apply to Eq. (1) the Fourier transform 

F[T(ρ, z; t)] = 
1

(2π)2 ⌡⌠
–∞

∞

 d2ρT(ρ, z; t)e-iκρ (9) 

 

and the Laplacian transform 
 

L[T(ρ, z; t)] = ⌡⌠
0

∞

 dtT(ρ, z; t)e-st . (10) 

 

Using Eqs. (6)–(8) we obtain for 
 

LF[T(ρ, z; t)] = T
~
(κ, z; s) 

 

the following equation: 
 

(s + a2κ2) T
~
(κ, z; s) = a2 

d2T
~
(k, z; s)

dz2  (11) 

 

with the boundary conditions 
 

q
~
(κ, s) = k 

∂
∂zT

~
(κ, z; s)⏐z=L , (12) 

 

T
~
(κ, z; s)⏐z=L = T

~
(κ, s) , (13) 

 

T
~
(κ, z; s)⏐z=0

 = 0 , (14) 
 

k 

∂T(k, z; s)
∂z z=0

 = 0 . (15) 
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At first we find the heat flux through the plate whose 
back surface is at a constant temperature. In this case we 
use boundary conditions (12) and (13). Let us introduce the 
new functions V(κ, z; s) and U(κ, z; s) so that to satisfy 
the relations 

 

V(κ, z; s) q
~
(κ, s) = k 

∂
∂zT

~
(κ, z; s) ; (16) 

 

U(κ, z; s) q
~
(κ, s) = k T

~
(κ, z; s) . (17) 

 
Then instead of Eqs. (11), (12), and (14) we obtain 

the system of ordinary differential equations 
 

(s + a2
κ

2) U(κ, z; s) = a2 
dV(k, z; s)

dz  ; 

 

dU(k, z; s)
dz  = V(κ, z; s) ; (18) 

 
with the boundary conditions 
 

V(κ, L; s) = 1 , 

 

U(κ, 0; s) = 0 . (19) 
 
Let us reduce boundary problem (18)–(19) to the problem 
with the initial conditions. To this end, we use the 
embedding method2 assuming the parameter L to be an 
argument of the functions V and U and differentiate 
Eqs. (18) and (19) with respect to L. 

Taking into account that 
 

d
dLV(κ, L, L; s)=

∂
∂LV(κ, z, L; s)⏐z=L + 

∂
∂zV(κ, z, L; s)⏐z=L,(20) 

 

where  

 

∂
∂zV(κ, z, L; s)⏐z=L = 

s + a2k2

a2  U(κ, L, L; s) , 

 
we derive from Eqs. (18) and (19) 
 

(s + a2κ2)
∂
∂LU(κ, z, L; s) = a2 

d
dz 

∂
∂LV(κ, z, L; s) , 

 

d
dz 

∂
∂LU(κ, z, L; z) = 

∂
∂LV(κ, z, L; s) ; (21) 

 

∂
∂LU(κ, 0, L; s) = 0 ; 

 

∂
∂LV(κ, z, L; s)⏐z=L = – 

s + a2k2

a2  U(κ, L, L; s) . (22) 

 
Comparing Eqs. (18) and (19) with Eqs. (21) and (22) 

and assuming that the solution of the problem is unique, we 
find 

 

∂
∂LU(κ, z, L; s) = – 

s + a2k2

a2  U(κ, L, L; s)U(κ, z, L; s) , (23) 

 

∂
∂LV(κ, z, L; s) = – 

s + a2k2

a2  U(κ, L, L; s) V(κ, z, L; s) . (24) 

 

Because  
 

d
dLU(κ, L, L; s)=

∂U(k, z, L; s)
∂L z=L

+
∂U(k, z, L; s)

∂z z=L
,(25) 

 

according to Eqs. (18), (19), (23), and (25) we obtain the 
Riccati equation for the quantity U(κ, L, L; S) 
 

d
dLU(κ, L, L; s) = – 

s + a2k2

a2  U2(κ, L, L; s) + 1 (26) 

 

with the initial condition 
 

U(κ, 0, 0; s) = 0 . (27) 
 

By integrating Eq. (26) 
 

⌡
⎮
⌠

0

U

 

 

dU

a2

S + a2k2 – U2

 = 
s + a2k2

a2  

⌡
⎮
⌠

0

L

 

 

dL , (28) 

 

we derive 
 

U(κ, L, L; s) = 
a

s + a2k2
 th⎝
⎛

⎠
⎞L s + a2k2

a . (29) 

 

Taking into account Eq. (17), we obtain 
 

q
~
(κ, s) = k 

s + a2k2

a  T
~
(κ, s) coth⎝

⎛
⎠
⎞L s + a2k2

a . (30) 

 

To invert Eq. (30), we make sequential use of the 
operational calculus theorems on the transform product, 
similarity, translation, differentiation of the original 
function as well as the theorem on the Fourier transform of 
convolution.3 Taking into account that 

 

L[Θ
3
(1, t)] = 

coth s

s
 , 

 

where 
 

Θ
3
(ϑ, t) = 1 + 2∑

n=1

∞

 e-n
2π2t cos2πnϑ  

 

is the Jacobi function,3 we finally obtain 
 

q(ρ, t) = – 

k

4πa2L
 
⌡⎮
⌠

0

t

 

 
dτ
⌡⎮
⌠

-∞

∞

 

 
d2ρ′ 

T(ρ′, τ)
(t – τ)  × 

 

× exp⎝
⎛

⎠
⎞ – 

(ρ – ρ′)2

4a2(t – τ)
 
d
dτ Θ3⎝

⎛
⎠
⎞1 , 

a2

L2 (t – τ)  . (31) 

 
Formula (31) is valid for the arbitrary target 

parameters a2, k and L as well as ρ and t. However, 
Eq. (31) can be simplified for the specific relations between 

these parameters. Assuming that L/a � 1 we make use of 

the power series expansion of the function coth(x): 
 

coth(x) = 
1
x + 

x
3 + O(x3) ,  x < 1 . 
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Then instead of Eq. (30) we obtain 
 

q
~
(κ, s) = 

k
L T

~
(κ, s) + 

kL

3a2 (s + a2κ2) T
~
(κ, s) + 

 

+ O
⎝
⎛

⎠
⎞k

L ( )ka
4

(s + a2k2)2 T
~
(k, s)  . 

 

Taking into account the first two terms of this expansion 
and making inversion, we have 

 

q(ρ, t) = 
k
L T(ρ, t) + 

kL

3a2 [ ] – a2Δ
⊥
T(ρ, t) + 

∂
∂tT(ρ, t)  . (32) 

 

Eq. (32) describes the process of heat transfer through 
the thin two–dimensional plate. It can be rewritten in the 
form of the heat–conduction equation with the sources 

 

∂
∂tT(ρ, t) = a2Δ

⊥
T(ρ, t) + 

3a2

kL  q(ρ, t) – 
3a2

L2  T(ρ, t) . (33) 

 

For the other limiting case in which L/a � 1 we make use 

of the asymptotic expansion 
 

cothx = 1 + 2e-x + O(e-2x) ,  x � 1  
 

and consider the first term only. Inverting the relation 
 

q
~
(κ, s) = k 

s + a2k2

a  T
~
(κ, s) , 

 

we obtain the solution of the problem for the semi–infinite 
body 
 

q(ρ, t) =–
k

8 π3a3
 

⌡
⌠

0

t
 

 

dτ
⌡
⌠

–∞

∞
 

 

d2ρ′
T(ρ′, τ)

(t – τ)5
 exp⎝

⎛
⎠
⎞– 

(ρ – ρ′)2

4a2(t – τ)
. (34) 

 

Eqs. (33) and (34) can be directly derived from Eq. (31). This 
can be made by introducing the generalized thermophysical 

parameter F
0
 = 

a2

L2t into Eq. (31), by application of the 

Laplace method for F0 � 1, and by reducing the infinite 

summation in Eq. (31) to integration1 for the other limiting 

case (F
0
 � 1). 

When the back surface of the plate is thermally 
insulated, then to solve the inverse problem we must use 
Eq. (11) with boundary conditions (13) and (15). Setting 
up and solving the embedding equations we find that 

 

q
~
(κ, s) = kT

~
(κ, s) 

s + a2k2

a  th⎝
⎛

⎠
⎞L s + a2k2

a  . (35) 

 

Inversion of Eq. (35) yields the heat flux on the front side 
of the target with thermally insulated back surface 

 

q(ρ, t) = – 

k

4πa2L
 
⌡⎮
⌠

0

t

 

 
dτ
⌡
⌠

–∞

∞
 

 

d2ρ′ 
T(ρ′, τ)
(t – τ)  × 

 

× exp⎝
⎛

⎠
⎞ – 

(ρ – ρ′)2

4a2(t – τ)
 
d
dτ Θ1⎝

⎛
⎠
⎞1

2 , 
a2

L2 (t – τ)  , (36) 

 

 

where 
 

Θ
1
(ϑ, t) = 2 ∑

n=0

∞
 

 
(– 1)n exp

⎝
⎛

⎠
⎞– π2( )n + 

1
2

2

t  sinπ(2n + 1)ϑ. 

 

For F
0
 � 1 the asymptotic formula 

 

q(ρ, t) = 
Lk

a2  [ ]∂
∂tT(ρ, t) – a2Δ

⊥
T(ρ, t)  

 

can be derived while for F
0
 � 1 Eq. (34) can be derived for 

the semi–infinite body. 

Having obtained the integral representation for 

reconstruction of the heat flux it is easy to derive the 

corresponding relations for the integral moments of the flux: 

the position of the intensity distribution centroid, effective 

size, and functional of focusing. As the heat losses associated 

with radiation and heat exchange on the front side of the 

target are known, the integral moments of the flux are 

uniquely related with the integral moments of the laser beam 

intensity. The heat losses are assumed to be negligible. Then 

for the total intensity flux we obtain 
 

P
0
(t) = ⌡⌠

–∞

∞

 d2ρ I(ρ, t) 

 

and for the semi–infinite body we obtain 
 

P
0
(t) = – 

k

2 πa(1 – R)
 
⌡⎮
⌠

0

t

 

 
dτ 

M
0
(τ)

(t – τ)3
 , 

 

while for the cooled and thermally insulated targets we have 
 

P
0
(t) = – 

k
L(1 – R) ⌡⎮

⌠

0

t

 

 
dτM

0
(τ) 

d
dτ Θ3⎝

⎛
⎠
⎞1 , 

a2

L2 (t – τ)  , 

 

P
0
(t) = – 

k
L(1 – R) ⌡⎮

⌠

0

t

 

 
dτM

0
(τ) 

d
dτ Θ1⎝

⎛
⎠
⎞1

2 , 
a2

L2 (t – τ)  , 

 

respectively, where 
 

M
0
(t) = ⌡⌠

–∞

∞

 T(ρ; t) d2ρ . 

 

The vector specifying the coordinates of the intensity 
distribution centroid 
 

ρc{ρcx, ρcy} = i ρcx + j ρcy = 
1

P
0
(t) ⌡⌠

–∞

∞

 I(ρ; t) ρd2ρ  
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is given by the formulas 
 

ρc = – 

k

2 πa(1 – R)P
0
(t)

 
⌡⎮
⌠

0

t

 

 
dτ 

M
T(τ)

(t – τ)3
 , 

 

ρc = – 

k
L(1 – R)P

0
(t) ⌡⎮

⌠

0

t

 

 
dτM

T(τ) 
d
dt Θ3⎝

⎛
⎠
⎞1 , 

a2

L2 (t – τ)  , 

 

and 
 

ρc = – 

k
L(1 – R)P

0
(t) ⌡⎮

⌠

0

t

 

 
dτM

T(t) 
d
dt Θ1⎝

⎛
⎠
⎞1

2 , 
a2

L2 (t – τ)  , 

 

for the semi–infinite, cooled, and thermally insulated 
targets, respectively. Here 
 

MT(t) = ⌡⌠
–∞

∞

 T(ρ′; t) ρ′d2ρ . 

 

The effective beam radius ρ2

eff
 is given by the relation 

 

ρ
eff

2  = ρxeff

2   + ρyeff

2   = P
0

–1(t) ⌡⌠
–∞

∞

 I(ρ; t) ρ2d2ρ . 

 

The representations of ρ2

eff
 in terms of the temperature 

distribution over the surface for the three types of boundary 
conditions take the forms 

 

ρ
eff

2 =– 

k

2 πa(1 – R)P
0
(t)⌡⎮
⌠

0

t

 

 

dτ

(t–τ)3
 [MT2

(τ) + 4a2(t–τ)M
0
(τ)]; 

 

ρ
eff

2  =– 

k
L(1 – R)P

0
(t) ⌡⎮

⌠

0

t

 

 
dτ[M

T2
(τ) + 4a2(t – τ)M

0
(τ)] × 

 

× 
d
dτ Θ3⎝

⎛
⎠
⎞1 , 

a2

L2 (t – τ)  , 

 

ρ
eff

2  = – 

k
L(1 – R)P

0
(t) ⌡⎮

⌠

0

t

 

 
dτ[MT2

(τ) + 4a2(t – τ)M
0
(τ)] × 

 

× 
d
dτ Θ1⎝

⎛
⎠
⎞1

2 , 
a2

L2 (t – τ)  , 

 

where  
 

MT2
(t) = ⌡⌠

–∞

∞

 T(ρ′; t) ρ′2d2ρ′  

 

is the moment of the thermal inertia. 
 

Thus, for determination of the integral moments of the 
intensity distribution it is necessary to measure the moments 
of the temperature distribution. The functional of focusing 

 

S
2
(t) = ⌡⌠

–∞

∞

 I(ρ′; t) K(ρ′) d2ρ′ , 

 

being equal to the laser beam power inside the aperture 
prescribed by the function K(ρ) is related to the 
temperature distribution by the more complicated 
dependence. In particular, when focusing the radiation 
onto the circle of radius α (K(ρ) = 1 for ρ ≤ α and 
K(ρ) = 0 for ρ > α) using Eqs. (34), (31), and (36), we 
obtain 
 

S
2
(t) = – 

k

2 πa(1 – R)
 
⌡
⌠

0

t
 

 

dτ 
⌡
⌠

–∞

∞
 

 

d2ρ′ 
T(ρ′, τ)

(t – τ)3
 × 

 

× ⎣
⎡

⎦
⎤1 – J ⎝

⎛
⎠
⎞α2

4a2(t – τ)
 , 

ρ′2

4a2(t – τ)
 ; 

 

S
2
(t) = – 

k
L(1 – R) ⌡

⌠

0

t
 

 

dτ 
⌡
⌠

–∞

∞
 

 

d2ρ′ T(ρ′, τ) × 

 

× ⎣
⎡

⎦
⎤1 – J ⎝

⎛
⎠
⎞α2

4a2(t – τ)
 , 

ρ′2

4a2(t – τ)
 
d
dτ Θ3⎝

⎛
⎠
⎞1 , 

a2

L2 (t – τ)  , 

 

S
2
(t) = – 

k
L(1 – R) ⌡⎮

⌠

0

t

 

 
dτ 
⌡
⌠

–∞

∞
 

 

d2ρ′ T(ρ′, τ) × 

 

× ⎣
⎡

⎦
⎤1 – J ⎝

⎛
⎠
⎞α2

4a2(t – τ)
 , 

ρ′2

4a2(t – τ)
 
d
dτ Θ1⎝

⎛
⎠
⎞1

2 , 
a2

L2 (t – τ)  . 

 

Here 
 

J(x, y) = 1 – ey ⌡⌠
0

x

 e-t I
0
(2 yt) dt , 

 

where I
0
(ξ) is the modified Bessel function.4 It is obvious that 

the relations for the integral moments and energy functionals 
of radiation are simpler for the case of the thin two–
dimensional targets. 

Thus, we derived the calculational formulas for 
reconstruction of the intensity distribution, integral moments, 
and energy functionals of a laser beam from the temperature 
distribution over the surface of the heated target. The 
examined problem belongs to the inverse problems of the 
thermal conductivity and is called the problem of conversion 
of the boundary conditions.5 

As far as we know, the analytical solution of this 
problem in the multidimensional formulation has been 
obtained by us for the first time. The problem is classified 
among the ill–posed problems that is associated with the 

occurence of the characteristic Abel kernel ( t – τ)–n in 
integral representations (31), (34), and (36). The 
regularization of the solution of such a problem in  
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one–dimensional formulation was considered in detail in 
Ref. 1. It is obvious that the practical implementation of the 
above–derived relations calls for the development of an 
effective engineering algorithms stable with respect to the 
noise in the initial data in the form of the measured 
temperature. 
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