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The curves of anomalous dispersion of a minor impurity of a molecular gas in a 
buffer gas are calculated taking into account laser–induced distorsions of Maxwell's 
molecular velocity distribution at the levels resonant with laser radiation. It is shown 
that account of this nonequilibrium may lead to an increase in the absolute values of 
variations in the refractive index by several times. In this case the result depends 
strongly on the ratio of the velocities of elastic (T–T) and rotational (R–T) 
relaxations of molecules. In the limiting case of slow elastic relaxation a simple 
formula for the refractive index is obtained and its range of applicability is analyzed. 
A parameter of resonance self–focusing of the CO

2
–laser radiation in the atmosphere 

is estimated taking the laser–induced distortion of the Maxwellian distributions into 
account. 

 
1. It is well known that laser–induced variation in the 

refractive index of media in the region of anomalous 
dispersion leads to the resonance self–focusing (self–
defocusing) of a laser beam.1,2 This effect manifests itself 
within the small time of radiation exposure when the 
thermal effects are insignificant and the mechanism of 
thermal self–action has not yet worked.3–5 The resonance 
self–focusing in a gas is usually analyzed either without 
consideration of the distortion of Maxwell's velocity 
distribution of molecules in the radiation field1,2,6 or by 
means of qualitative description of such a nonequilibrium 
within the scope of the model of relaxation constants.7 The 
quantitative description of the laser–induced velocity 
nonequilibrium in molecular gases requires the use of a more 
complicated kinetic model taking into account the processes 
of collisional elastic (T–T) and rotational (R–T) 
relaxations.8 In this paper the curves of anomalous 
dispersion of a molecular gas are calculated for various 
ratios of the velocities of elastic and rotational relaxations. 
It is shown that an account of the laser–induced velocity 
nonequilibrium of molecules may increase the absolute value 
of variation in the refractive index of a gas by several times 
and, as a result, affect strongly the resonance self–focusing 
of the radiation. 

2. Lef us consider a minor impurity of resonance 
absorbing molecules in a buffer gas. We assume that the 
monochromatic radiation interacts noncoherently with an 
isolated vibrational–rotational transition |V, J> – |V′, J′> 
distoring Maxwell's velocity distribution of molecules at the 
levels |V, J> and |V′, J′>. Here we restrict ourselves to an 
analysis of a situation in which the resultant velocity 
distribution function of molecules remains Maxwellian. 
Taking into consideration the processes of optical excitation 
and rotational and elastic relaxations of gas molecules the 
absorption coefficient has the form8: 
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Here |dV'J'

VJ 
| and ωV'J'

VJ 
 are the matrix element of the dipole 

moment and the frequency of transition |V, J> – |V′, J′>, ω 
and I are the frequency and the intensity of laser radiation, 
ΔωL and ΔωD are the Lorentz and Doppler widths of the 

absorption line, τRT and τe are the characteristic times of 

rotational and elastic relaxations between the molecular 
levels being considered (τ–1

RT
 is the total velocity of 

withdrawal of the particles onto the other rotational 
sublevels and τ–1

e  is the frequency of thermalized collisions 

with unchanged rotational molecular state8), NV and NV′
 

and qJ and qJ′ are the vibrational populations and 

equilibrium fractions of molecules at rotational sublevels, c 

is the light velocity, and h-  is Planck's constant. The 
function gV(x, a*) describes the Voigt line profile with the 

radiation intensity–dependent parameter a*. 
In accordance with the Kramers–Kronig relations9 the 

refractive index of a gas is 
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In writing down Eq. (2) we neglect the contribution of far–
line wings. Hereafter it is also assumed that the pulse 
duration of laser radiation is much less than the 
characteristic time of change in the population of the lower 
vibrational level. In this case we assume with a good 
accuracy the value of NV be equilibrium and 

NV 
qJ � NV′

qJ′. This assumption allows us to consider the 

quantity (NVqJ – NV′
qJ′) entering into Eq. (1) to be 

independent of the radiation frequency which considerably 
simplifies the integration of Eq. (2). 
 

 
 

FIG. 1. Lower halves the curves of anomalous dispersion of 
a molecular gas calculated according to Eqs. (1) and (2) for 
a fixed value of the radiation intensity (β* = 5) and for 
different values of τe/τRT: 1) 0, 2) 1, and 3) ∞. The quantity 

n – 1  = 

2(n – 1) ωV'J'

VJ
 ΔωD

cα
0
ΔωL

 is laid off as ordinate. 

 
Shown in Fig. 1 are the curves of anomalous dispersion 

calculated from Eqs. (1) and (2) for different values of the 
parameter τe/τRT. The dependences of the normalized 

variations in the refractive index δn– = 
δn

1 – n(I = 0) on the 

radiation intensity (on the parameter β* = 
κτRT

2τp
 ∼ I) are 

shown in Fig. 2, where δn = n(I) – n(I = 0). The curves 
with τe/τRT = ∞ correspond to the maximum velocity 

nonequilibrium, the curves with τe/τRT = 0 correspond to 

the absence of distortions of Maxwellian molecular velocity 
distribution. It can be easily seen that the account of laser–
induced velocity nonequilibrium does not alter the 

qualitative behavior of anomalous dispersion and of δn–(I). 
However, an account of this nonequilibrium increases, as it 
can be seen from Fig. 2, the magnitude of variation in the 

refractive index δn– almost by a factor of three in some 
cases. 

The effect of elastic relaxation becomes pronounced 
only for τe/τRT < 1. If τe/τRT > 1, the approximation 

τe/τRT � 1 can be used with satisfactory accuracy. In this 

case the simple formula for the refractive index can be 
derived from Eqs. (1) and (2)  
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This formula becomes simpler for a* � 1: 
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Note that Eq. (4) for a* � 1 also follows immediately 

from Eqs. (1) and (2) regardless of the ratio of τe and τRT. 

The saturation parameter κ in Eqs. (3) and (4) is 
independent of the time τe and is determined by the 

characteristic time τRT. It is physically obvious since in the 

former case the elastic relaxation can be neglected and in 
the latter case all molecules interact with radiation 
regardless of their velocities. It should be noted that in the 
particular case of κ = 0 Eq. (3) transforms into the relation 
which was derived in Ref. 6 and used to estimate the 
variation in the refractive index of water vapor in the field 
of the CO

2
–laser radiation. 

3. Let us estimate the parameter of self–action of the 

beam Zf = 
d
4( )

1
δn

1/2 (d is the initial beam diameter) in 

the case of resonance self–focusing of the CO
2
–laser 

radiation in the atmosphere. Recall that the effect of 
resonance self–focusing is observed when ω > ωV'J'

VJ
. The 

detuning of the cyclic frequency of the CO
2
–laser radiation 

from the center of the corresponding absorption line of the 
atmospheric CO

2
 can be produced not only by the 

intraresonator methods10 but also as a result of motion of 
the radiation source.11 The calculated parameters of the 

curves δn
–

(I) in Fig. 2 correspond to the absorption of the 
radiation at the 10 P (20) line of the CO

2
 laser for x = 1 

⎝
⎛the
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 for the 

mid–latitude atmosphere at an altitude of about 45 km (see 
Ref. 12): p ≈ 1.76⋅10–3 atm, T ≈ 270 K, and 
ΔωL/ΔωD ≈ 0.158; in addition, 1 – n(I = 0) ≈ 1.85⋅10–11 

and β* ≈ 2⋅10–3I (W/cm2). The exact value of τe/τRT 
for 

the levels of the transition 10 P (20) of CO
2
 in air (N

2
) is 

unknown. However, simple estimates on the basis of the 
experimental data of Ref. 13 yield τe/τRT > 1. As has 

already been noted above, in this case Eq. (3) can be used 
with satisfactory accuracy. For the radiation intensity 
I = 500 W/cm2 (β* ≈ 1) Zf ≈ 8.7⋅10

4d. Disregarding the 

velocity nonequilibrium this value would be greater by a 

factor of 1.5. The beam is focused when Zf < 
πd2

2λ  

(λ ≈ 10.6 μm is the radiation wavelength). Under these 
conditions with an account of the velocity nonequilibrium 
this inequality is fulfilled for the beams with diameter 
d > 0.6 m. It must be stressed that the inequality  
(αV'J'

VJ
)–1> Zf is valid for d < 1 m, i.e., the beam's energy 

dissipation can be ignored when estimating the self–
action parameter. 
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FIG. 2. Variation in the refractive index 

δn = 
[n(I) – n (I = 0)]
[1 – n (I = 0)]  vs the radiation intensity (the 

parameter β*) for a fixed value of detuning x = 1. For 
notation see Fig. 1. 
 

The analysis of the curves of anomalous dispersion of 
CO

2
 in the atmosphere calculated at different altitudes H 

shows that the effect of laser–induced velocity 
nonequilibrium of molecules on δn decreases rapidly as 
the altitude decreases (i.e. as ΔωL/ΔωD ∼ p ∼ exp(–H) 

grows). 
The altitude H = 45 km was chosen for the estimates 

starting from the following compromise considerations:  
1) altitude must be high enough in order to the 

Benneth dip and peak be sharply pronounced 
(H > 35 km); 

 

2) altitude must not be very high to observe the 
radiation self–focusing along the path lengths of interest in 
practice. 

Note in conclusion that the above–discussed 
consideration is applicable also for resonance self–defocusing 
of radiation when ω < ωV'J'

VJ
. 
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