
82   Atmos. Oceanic Opt.  /February  1992/  Vol. 5,  No. 2 V.I. Starikov and S.N. Mikhailenko 
 

0235-6880/92/02  82-05  $02.00  © 1992 Institute of Atmospheric Optics 
 

AN EFFECTIVE DIPOLE MOMENT OPERATOR FOR NONRIGID H2X-TYPE 

MOLECULES. APPLICATION TO H2O MOLECULE 
 

V.I. Starikov and S.N. Mikhailenko 

 

Institute of Atmospheric Optics, 
Siberian Branch of the Russian Academy of Sciences, Tomsk  

Received December 3, 1991 
 

A theory of effective dipole moment of nonrigid molecules of H2X–type is developed. A 
large amplitude vibration described by the ρ coordinate is taken into account. Based on solution 

of inverse problem and model representation the function μx
e
(ρ), μx

1
(ρ), and μx

3
(ρ) for H2O molecule 

is reconstructed from the series expansion of the molecular dipole moment over normal coordinates 
qi (i = 1,3).  

 
INTRODUCTION 

 
A theoretical study of the intensity of rovibrational 

absorption lines of molecules needs for calculating matrix 
elements of the effective dipole moment on the basis of 
rovibrational wave functions corresponding to the zeroth 
approximation of the Hamiltonian of a molecule (or on the 
basis of rovibrational wave functions obtained using the 
perturbation theory). In addition, information about these 
matrix elements can be obtained from experimentally 
measured intensities of absorption lines. This paper is devoted 
to investigation of the dipole moment function of the H20 
molecule based on experimental data on the parameters of the 
effective dipole moment presented in Refs. 1–7 and using 
theoretical relations connecting these parameters with the 
function of dipole moment and the parameters of rovibrational 
Hamiltonian H of a nonrigid molecule.8 In Ref. 9 such 
theoretical relations have been derived for asymmetric top 
molecules assuming the molecular vibrations to be small (i.e. 
on the basis of harmonic wave functions). 

 
GENERAL RELATIONS FOR THE OPERATOR OF 

EFFECTIVE DIPOLE MOMENT 
 

A transformed operator of dipole moment μZ
′  (only Z–

component of the operator μ in the spatial coordinate 
system is given by 
 

μ
Z
′ = μz + [iS, μz] + 

1
2 [iS, [iS, μz]] + … , (1) 

 

where iS is the operator of a contact vibrational 
transformation of the initial Hamiltonian H of a molecule 
into an effective rotational Hamiltonian Heff

. By a 

rotational contact transformation the operator μZ
′
 is reduced 

to the operator of effective dipole moment 
 

μ 
∼
Ζ = μZ

′  + [iRS, μZ
′ ] + … .   (2) 

 

The above relations are exactly the same as those used in 
the model of a quasirigid molecule.9 The main difference 
between the calculations made in Ref. 9 and ours presented 
below are the following. First, the functions μα(ρ, qi) i.e., 
the components of the dipole moment ä in the molecular 
coordinate system (α = x, y, z) related to μΖ by 

 

μΖ = ∑
α

 ϕ
α μα

 ,  

where ϕ
α
 are the direction cosines, are expanded in a series 

only over qi that correspond to small amplitude vibrationson 
 

μα(ρ, qi) = μa

e
(ρ) + ∑

i

 μ
α

i
(ρ, qi) + 

1
2 ∑

ij

 μ
α

ij
 (ρ) qi qj + … , 

i,j = 1, 3. (3) 
 

The coefficients of the series expansion (3) are functions of 
the strong vibration coordinate ρ (see Ref. 8). For the 
second, the basis of vibrational wave functions is composed 
of the functions ψn(ρ) ⋅ ϕ

ν
(q), where ϕ

ν
(q) are 

eigenfunctions of the Hamiltonian H 0

sm.vib
 that describes 

harmonic oscillations in the molecule, and ψn(ρ) are the 

wave functions obtained by integrating numerically the 
Schrödinger wave equation.10 
 

H0

b
 ψn(ρ) =  

=
2

0 02
( ) ( ) ( ) ( ) ( )nB B U Vρ ρ

⎧ ⎫⎡ ⎤∂ ∂ ∂⎪ ⎪
− ρ − ρ + ρ + ρ Ψ ρ⎨ ⎬⎢ ⎥∂ρ ∂ρ∂ρ⎪ ⎪⎣ ⎦⎩ ⎭

=Enψn(ρ)

 (4) 
 

with the anharmonic potential function V0(ρ). The zeroth 
approximation Hamiltonian, 
 

H0 = H 0

sm.vib
(q) H0

b
  (5) 

 

that is used when transforming the initial Hamiltonian H of 
a nonrigid molecule to the effective one Heff results from the 
expansions of the potential function V(ρ, qi) and of the 
inverse inertia tensor μαβ(ρ, qi) into series qi coordinates 

 

V(ρ, qi) =V0(ρ) + ∑
i

 φi (ρ) qi +   

+ 
1
2 ∑

ij

 {ωi(ρ) δij + φij(ρ)} qi qj + 
1
6 ∑

ijl

 φijl(ρ) qi qjql + … ; (6a) 

 

1
2 μαβ(ρ, qi) = Bα(ρ) δαβ

 

+∑
i

 B i

αβ
(ρ)qi + ∑

ij

B ij

αβ
(ρ)qiqj + … . (6b) 

 

The scheme of calculations of operators of iS 
transformations within the model of a nonrigid molecule 
and using the zeroth approximation of H0 (Eq. 5) can be 
found in Ref. 11, and the generator iRS is described in 
Ref. 9, therefore we omit detailed derivation of individual 

contributions to μ 
∼
Ζ on the basis of vibrational wave 

functions. We should like to note only that all below  
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calculations were performed to the terms of the second order 

of the small parameter K ≅ (B 
_
/ω 

_
) magnitude, where B 

_
 is 

the mean rotational constant and ω 
_
 is the mean frequency of 

a harmonic oscillation. For the sake of convenience we shall 
reduce these matrix elements to the form similar to that 
described in Ref. 9, while, in contrast to Ref. 9, we use 
different relation of these matrix elements to the molecular 
parameters and parameters of dipole moment function. 

 
AN EFFECTIVE DIPOLE MOMENT OF A MOLECULE 

IN A GIVEN VIBRATIONAL STATE 
 

Let us write, according to Ref. 9, this matrix element 
in the form 

 

μ 
∼
Ζ (n,ν) = < n, ν ⎜μ 

∼
Ζ⎜ν, n> = ∑

α

 ϕ
α μ 

∼
 a

e
 (n,ν) + 

 

+  ∑
αβγ

 
1
2 {ϕα

, J
β
J
γ }

α,β,γ
M 
∼

 2(n), (7) 

 

where ⎜n, ν> = ⎜Ψn> ⎜ϕ
ν
1

> ⎜ϕ
ν
3

>,  {A, B} = AB + BA. 

For parameters μ 
∼

 a

e
(n, ν) and 

α,β,γ
M 
∼

 2(n) we have obtained 

the relations  
 

 

(8) 

 

 (9) 
 

where f (nm) = <Ψn ⎜f(ρ)| Ψm>, f (n) = f (nn), 
ϕ
κκ

(ρ) = ϕ
κκ

(ρ) + 2Δω
κ
(ρ), Δω

κ
(ρ) = ω

κ
(ρ) – ω

κ
(ρe), 

ΩnS = En – Es, and ε
αβγ

 is tne antisymmetric unit tensor of 

the third rank. The relation of the parameter S
11

(n)
 to the 

parameters of effective Hamiltonian remains the same as in 
the model of a semirigid molecule,12 while the relation of 
the latter to the molecular parameters is different.13,14 In the 
limiting case of a simmgid molecule the following series 
expansions are valid: 
 

 (10)
 

 

as well as similar expansions of the functions μ
α

i
(ρ), B

κ

αβ
(ρ), … . 

The enharmonic wave functions ⎜n > may be represented in 
series expansions over the functions of harmonic oscillator 
⎜m > 0 

 (11)
 

 

Substitution of relations (10) and (11) in formulas (8) and 
(9) yields the well-known relations derived in Ref. 9. 

 
AN EFFECTIVE DIPOLE MOMENT RELATING 

BENDING VIBRATIONAL STATES 
 

The sought-after-matrix element is given by 
 

 (12) 

 

For coefficients μ 
∼
α(nm) and 

α,β
M 
∼

 2(mn) we have obtained 
the relations 
 

 

 (13) 

 

 (14) 

 

where 

 

 
 

The symbol Σ∗ denotes the fact that terms with resonance 
denominators (i.e., with ωi ≈ Ωps) are removed from the 
sum. In the case of random resonances of the Fermi type 
(ω1 ≈ Ωmn) or of the second Coriolis kind (ω3 ≈ Ωmn) one has 
to make the change of variables in formulas (13) and (14) 
 

 (15)
 

 
AN EFFECTIVE DIPOLE MOMENT OF A MOLECULE 

FOR COMBINATION BANDS 
 

The sought–after–matrix element   
 

μ 
∼
Ζ (n, ν

κ
 ; ν

κ
 + 1, m) = < nν

κ
 ⏐μ 

∼
Ζ ⏐ν

κ
 + 1, m >  can be 

reduced, as in the model of semirigid molecule, to the form 
 



84   Atmos. Oceanic Opt.  /February  1992/  Vol. 5,  No. 2 V.I. Starikov and S.N. Mikhailenko 
 

 

 (16) 

 

where 
 

 

 (17)
 

 (18) 

 
The Coriolis resonance of the first kind (ω1 ≈ ω3) can be 
taken into account in formula (18) in the same way as in 
Ref. 9. The most significant difference from the model of 
semirigid molecule appears in the formulas for matrix 
elements that describe the relations between the states with 
different values of the quantum number n. At the same 
time, if the effective dipole moment describes the relations 
between the states with one and the same quantum number 
n, the sought-after formulas differ but slightly from similar 
relations of the model of semirigid molecule and therefore 
we shall not discuss them below. By way of example we 
present an expression for the effective dipole moment in the 
case of combination (difference) bands with n = m. 
 
AN EFFECTIVE DIPOLE MOMENT OF A MOLECULE 

IN THE CASE OF COMBINATION (DIFFERENCE) 
BANDS WITH n = m 

 
The sought–after–matrix element is given in the form 

 

 

 

The function Ll(+) = for νl + 1, and Ll(–) =
 

for νl – 1. This formula differs from the analogous9 by the 
second term and by the fact that the diagonal matrix 
elements of the functions ζ(ρ), B(ρ), and the like, are used 
in it instead of constants ζ, B, … . In the limiting case (see 

Eqs. (10) and (11)) μ 
∼
Ζ (n, νκ, ...) is reduced to the function 

obtained in Ref. 9. 
 

APPLICATION TO H2Î MOLECULE 
 

The above relations have been used for seeking for 

functions μx(ρ), μx

1
(ρ), and μx

3
(ρ) for the H2O molecule based 

on relation (3). In doing this, we used experimental data on 

the coefficients μ 
∼

j ≡ {μ 
∼
α, μ

α,β
}, j = 1, 2, ... M of the series 

expansion 
 

 (19) 

 

which are normally used in processing the experimental 
data on the bands of A (odd Δν3) or Â (even Δν3), 
respectively. It is obvious that formulas (12) and (13) can 

easily be reduced to the form (19). The functions μx

e
(ρ) and 

μα
i
(ρ) (i = 1 at α = ξ and i = 3 at α = z) have been chosen 

in the form 
 

 
 

where σ takes the indices e or l. When choosing the 
representation of the functions under consideration we 
assumed that for linear configuration of a molecule the 
following conditions should be satisfied: 
 

μx
e
(ρ = 0) , μx

1
(ρ = 0) = 0. (21) 

 

Under these conditions the constant Ñ entering into 
Eq. (20a) can be found from Eq. (21). The parameters a, b, 
p are assumed to be variable and are found by minimizing 
the functional 
 

S = 
2exp

1

( ) ,
M

calc
jj j

j

W

=

⎡ ⎤μ − μ ⎦⎣∑ � �  (22) 

 
where W

j
 is the weight introduced so that the order of 

magnitude of all data used in the fitting procedure be one 
and the same. The wave functions Ψn(ρ) from the matrix 
elements were determined by integrating numerically 
Eq. (9) in which the potential function V0(ρ) is given by 
 

V0(ρ) = 
2 2

2

2 4

[1 / ]

[1 / ]

e

e

H f H
f

H f

+ ⋅ ρ
ρ +

+ ρ ⋅ ρ

αα

αα

αα
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with the parameters fαα = 12857.902 cm–1, H = 10960.976 cm–

1, and ρe = 1.8208 rad. Integration of Eq. (4) was performed 

by the Numerov—Cooley15 method. The functions Bα(ρ), Bκ
αβ

(ρ), ... can be taken from Refs. 8 and 13. The functions φ
i
(ρ), 

ω
i
(ρ), ... entering into the series expansion of a molecular 

potential were calculated using the technique described in 
Refs. 10 and 16 with the strength parameters f

ij
, f

ijl
 taken 

from Ref. 16. 
 

 
 

a) Calculations were made using (–) sign at the parameters μ 
∼
j 

of the band 4ν2 and functions (20) and (20b). 

b) Calculations were made using (–) sign at the parameters μ 
∼
j 

of the bands 3ν2 and 4ν2 and functions (20) and (20b). 
c) Calculations were made using functions (20a) and (20b). 
 
Results of calculations of the coefficients of the series 
expansion (19) are presented in Tables I–III together 
with the experimental data. For the case Δn = 0 the 
values of matrix elements were calculated by formula 
(13). Total number of experimental values M = 21. The 
values of parameters a and b reconstructed by solving the 
inverse problem are given in Table IV, and the 

reconstructed function μx
e
(ρ) is shown in the figure. 

 

 

 

 

 
 

FIG. 1. Function –μx
e
(γ) of Eq. (20), (γ = π – ρ) obtained 

for the H2O molecule by minimizing functional (22). 
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CONCLUSION 
 

First we should like to make some remarks concerning 

the choice of a sign of the parameters μ
 ∼

 j
exp. Inverse problems 

for the bands 3ν2 and 4ν2 have been solved using opposite 

signs of the parameters μ
 ∼

 j
exp. Thus the calculational data (a) 

presented in Table I were obtained with (–) sign of the μ 
∼

 j

exp
 

to 4ν2 band. The calculational data (b) from this table also 

used (–) sign of the μ
 ∼

 j
exp parameter in the bands 3ν2 and 4ν2, 

and functions (20a) and (20b). The (–) signs of the μ
 ∼

 j
exp, is 

preferable in the case of 4ν2 band if model representations 
(20a) and (20b) are used, since these functions with the 
parameters obtained from experimental data for bands ν2, 2ν2, 

and 3ν2 and for the ground state result, in direct calculations, 

in (–) μ
 ∼

 j
calc signs for the band 4ν2. 

Experimental data are described most adequately (i.e., 

without changing sign of μ
 ∼

 j
exp) by the function of the 

Eq. (20a) type in which the power 2 should be replaced by 4. 
However, the accuracy of reconstruction made using functions 
(20) and (20b) is higher. Note once more that the proposed 
here functions (20) are the model functions and the parameters 
a and b from Table IV are optimal in the sense of Eq. (19), 

i.e., they describe the set of experimental data on μ
 ∼

 j
exp best of 

all. Nevertheless these functions enable one to calculate the 

parameters μ
 ∼

 j
exp (see Tables I—III) for a number of bands, for 

which experimental data on intensities are unvailable. 
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