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The problem of the stationary stimulated Raman scattering (SRS) is 
investigated by the methods of numerical simulation. A two–dimensional problem in 
the transverse coordinates is considered, which allows us to study the conditions of 
forming both spatially coherent and spatially incoherent Stokes beams. Laser beams 
having different spatial profiles are studied.  

 
As is shown by theoretical estimates and experimental 

data, the phenomenon of stimulated Raman scattering 
(SRS) is of fundamental importance in the analysis of 
propagation of the intense laser radiation on the long paths 
in the atmosphere.1,10  

The effect of the SRS on the beam characteristics was 
investigated by many authors (see, for example, Refs. 2 and 
3), including the problem of propagation of the intense laser 
radiation in the atmosphere.4,5 In the present paper the 
model of the stationary SRS without regard to the 
parametric interaction (which is applicable, e.g., for the 
rotational SRS of the circular polarized pumping radiation) 
is studied by the methods of numerical simulation. We 
consider the two–dimensional problem in the transverse 
coordinates which allows us to investigate the conditions of 
forming both the single–mode (spatially coherent) and 
multimode (spatially incoherent) Stokes beams. We 
determine the average characteristics of the scattered 
radiation by the method of numerical simulation. The initial 
laser beams having different profiles are studied.  

Let the laser beam (the pump beam) propagating along 
the z axis be incident on the nonlinear medium. In the 
quasioptics approximation, neglecting the dispersion of the 
medium, the accompanying SRS is described by the 
following system of equations for the complex amplitudes of 
the laser– and Stokes– radiation components: 
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Stokes radiation components normalized on the intensities 
⏐A

l
⏐2 = I

l
 and ⏐A

S
⏐2 = I

S
; γ = ω

l
 /ω

S
; ω

i
, k

l
, ω

S
, and k

S
 are 

the frequencies and the wave vectors of the pumping and 
Stokes waves; ϑ = t – z /ν
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the group velocities of pumping and Stokes waves; Q is the 
nondiagonal element of the density matrix; T

2
 is the time of 

the transverse relaxation of the Raman transition; g is the 
amplification factor of the stationary SRS; Δ⊥ is the transverse 

Laplacian; N is the foreign source, characterizing the intrinsic 
noise of the medium, which can be considered as the Gaussian 
random process with the correlation function  
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where ( )
ds
dΩ  is the spontaneous scattering cross section 

per unit volume of the medium and δ(x) is the Dirac delta 
function. Let us take  
 

A
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for the complex amplitude of the laser field. 
As the boundary condition for the Stokes component 

we choose the zeroth–order oscillations of the vacuum field 
with the correlation function  
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k
B
 is Boltzman's constant and T is the temperature of the 

medium. Equations (1)–(3) are valid in the absence of 
dispersion, when the pump intensity exceeds the critical 
value I

l
 > I 

cr
 = Δων/g, where Δω is the width of the pump 

frequency spectrum.6 We hereafter will consider the case in 
which the characteristic time of the change in the laser 
radiation intensity is much greater then the relaxation time 
T

2
. In this case the stationary regime of the SRS is realized. 

The stationary regime of the SRS is realized on the 
rotational transitions of nitrogen molecules having the 
relaxation time T

2
 = 0.1 ns at a pressure of ∼ 1 atm for the 

pulses of duration > 10 ns. Let us reduce Eqs. (1)–(3) to 
the dimensionless form. Let us take  
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where a is the characteristic transverse size of the pump 
beam and E

l
 0 is the characteristic value of the modulus of 

the complex pump amplitude. Then we obtain from 
Eqs. (1)–(3): 
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pump intensity, a = κ
l
 /κ

S
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 0⏐2. The constant 

B has a sense of the amplification increment of the Stokes 
radiation over the diffraction length κa 

2 of the laser beam.  
On the starting section of the path the exhaustion of 

the pump beam owing to the SRS may be ignored. 
Therefore, the term on the right side of Eq. (9) may be 
omitted. Let us take the Fourier transforms of Eqs. (10) and 
(11) in τ and eliminate q from Eqs. (9)–(11). As a result, 
the system of Eqs. (9)–(11) takes the form  
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and S = (4π(dσ/dΩ)/k
S
1/2. Boundary condition (6) is 

reduced to the form  
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Because the boundary condition for ξ
Sb

 and the source in 

Eq. (13) have Gaussian statistics, the solution of linear 
Eq. (13) is the Gaussian random function. If we are interested 
in the value of ξ

S
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, x⊥, τ) at a certain fixed moment (for 

example, at τ = 0), then obviously ξ
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represent the random function with Gaussian statistics.  
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and x⊥, where the most significant amplification of the 

Stokes wave occurs. Then the approximate relation for the 
function ξ
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with the boundary condition in the form of the Gaussian 
random function, where  
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Approximate relation (14) means that we neglect the 
effects involving "interweaving" of spatial and temporal 
variables, for example, with focusing of the Stokes radiation 
with the "lens" formed by the pump beam.  

When ⏐ξ
S
⏐ becomes sufficiently large, the term 

describing the noise source in the right side of Eq. (11) may 
be omitted. In this case, eliminating q from Eqs. (9)–(11), 
we obtain  
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On the starting section of the path, when we can 
neglect the exhaustion of pump, the lines of the Stokes 
radiation get narrower by a factor of (M)1/2 (M is the total 
increment of amplification of the Stokes radiation).6 Thus 
the functions ξ

S
 and ξ

l
 in Eqs. (17) and (18) in the first 

order can be considered to be slowly varying functions of 
time in comparison with es. In this approximation Eqs. (17) 
and (18) are reduced to the equations for the SRS–induced 
amplification of the monochromatic Stokes radiation in the 
regime of the pump beam exhaustion:  
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Accordingly, the solution of the problem on the SRS 
generation is reduced to the solution of Eqs. (12) and (15) 
on the starting section of the path, where the SRS is 
realized in the assigned pump field, and of Eqs. (19) and 
(20) in the regime of the pump beam exhaustion.  

Since Eqs. (12) and (15) agree with Eqs. (19) and (20) 
except for the term in the right side of Eq. (19), which is 
unimportant on the starting section of the path, the solution 
of Eq. (14) yields the solution of the SRS problem not only 
on the starting section of the path but also in the regime of 
the pump beam exhaustion.  

Equations (19) and (20) were solved numerically by 
the separation technique for physical factors.7 We used the 
δ–correlated field given by Eq. (16) as a boundary 
condition for ξ

S
 at x

⎜⎜
 = 0. The ensemble of realizations of 

the boundary conditions was averaged over for ξ
S
. The 

calculations were made for the initial laser beams having 
Gaussian, super–Gaussian (I ∼ exp(–(r /a)n), n = 4, 6, 8) 
as well as annular profiles. The beams were chosen with 
identical maximum intensities and powers. The parameter B  
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varied from 50 to 300, which corresponded to the conditions 
of forming both spatially coherent (for small B) and the 
spatially incoherent (for large B) Stokes beams.  

On the starting section of the path in the field of the 
laser radiation, the Stokes wave starts to form from the noise 
seed caused by the spontaneous radiation and by the vacuum 
fluctuations of the field at the boundary of the medium. 
Furthermore, if the path length exceeds the threshold value 
z
th
, the energy is transferred from the pump beam into the 

Stokes beam. The calculated values of the dimensionless path 
length x

th
 = z

th
/κa 

2 for the laser beams having different 

shapes are shown in Fig. 1 as a function of the parameter 
B = 1/2gI 

0
 κa 

2. The value of the longitudinal coordinate, for 

which ≈ 1 % of the laser beam energy was transferred into the 
Stokes beam, was taken as a threshold value.  

 

 
 

FIG. 1. The dependence of the dimensionless threshold 
path length x

th
 = z

th
/κa 

2 on the parameter B = 1/2κa 
2gI 

for different shapes of the initial laser beams: 
1) Gaussian, 2) annular, and 3 – 5) super–Gaussian 
(n = 4, 6, and 8 are shown by curves 3, 4, and 5).  
 

In addition to the obvious fact that x
th

 decreases with 

increase of B one can easily see that for small B the value 
x

th
 strongly depends on the initial laser beam shape and this 

dependence becomes less pronounced when B increases. 
Such a behavior of x

th
 can be caused by a strong effect of 

the Fresnel diffraction of the laser beam for small B on the 
starting section of the path, and this effect decreases for 
large B. Moreover, such a behavior of the threshold value of 
the path length can be also associated with the dependence 
of the rate of increase of the increment of fundamental 
modes of the Stokes radiation on the shape of the incident 
radiation and on the parameter B.8,9  

On the section of the path, where the longitudinal 
coordinate exceeded the threshold value x

th
, the energy was 

transferred from the laser beam into the Stokes beam (the 
regime of pump beam exhaustion). Generally speaking, in 
this regime a certain increase of the Stokes beam divergence 
took place. This increase was mostly pronounced for large 
B. Therefore, for B = 300 the divergence increases 
approximately by a factor of 3. For small B this increase in 
the divergence becomes less pronounced in the regime of the 
pump beam exhaustion (for example, for B = 50 it 
practically does not occur). The same is true for the initial 
beams having other profiles. However, in these cases the 
divergence increase was less pronounced even for larger B.  

 

Since the resulting Stokes beam has a large divergence, it 
starts to spread and its intensity decreases with increase of the 
longitudinal coordinate when the pump beam energy is 
transferred into it. The ratio of the Stokes beam intensity on 
the axis in the far–diffraction zone to the laser beam intensity 
in the far diffraction zone without the SRS as a function of 
the parameter B is shown in Fig. 2 for different profiles of the 
initial laser beam. It can be seen that for small B the strong 
dependence of the intensity of the transmitted Stokes beam on 
the profile of the incident beam takes place in the far–
diffraction zone. When B increases, this dependence becomes 
less pronounced. Moreover, it can be seen from the figure, that 
the dependence of the intensity in the far diffraction zone on 
B (i.e., for the beam of a fixed radius on the incident beam 
intensity) has nonmonotonic character.  

 

 
 

FIG. 2. The dependence of the ratio of the Stokes radiation 
intensity I

S
 in the presence of the SRS to the laser radiation 

intensity I
l
 without the SRS in the far–diffraction zone on 

the parameter B for different shapes of the initial laser 
beams: 1) Gaussian, 2) annular, and 3 – 5) super–Gaussian 
(n = 4, 6, and 8 are shown by curves 3, 4, and 5). 
 

Apart from the average Stokes beam intensity, the 
variance of the intensity fluctuations, the correlation 
function, and the correlation radius were also determined in 
the calculation. The ratio of the Stokes beam radius r to its 
correlation radius r

c
 as a function of B are presented in 

Table I for the Gaussian, annular, and super–Gaussian 
(n = 4) initial laser beams.  

 

 
 

FIG. 3. The contour lines of the intensity of the Stokes 
beam for individual realization of the random seed for the 
Stokes component. The initial laser beam has a Gaussian 
profile for B = 300.  
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TABLE I. 
 

  r/r
c
  

B  Beams  

 Gaussian Super–Gaussian Annular 
100 0.7 1.9 1.1 
300 2.3 6.8 2.0 
500 4.0 7.6 4.3 

 
TABLE II. 

 

  (σ
I
)1/2/I  

B  Beams  

 Gaussian Super–Gaussian Annular 
100 0.14 0.04 0.05 
300 0.35 0.75 0.92 
500 0.57 0.75 0.80 

 
The square of this ratio characterizes the number of the 

beam inhomogeneities. The results are given for the 
longitudinal coordinate corresponding to almost complete 
(≈ 80 %) energy transfer into the Stokes beam. When B 
increases, this ratio also increases, which testifies to the 
transition to the regime of formation of the multimode Stokes 
beam. This transition occurs for the super–Gaussian beams at 
smaller values of B than for the Gaussian and annular beams. 
The relative variance of the intensity fluctuations of the 
Stokes component on the beam axis for the longitudinal 
coordinate, being the same as in Table I, are presented in 
Table II. This ratio characterizes the degree of the amplitude 
modulation of the Stokes beam. It can be seen from Table I 
that the degree of the amplitude modulation increases with B. 
The obtained results testify the necessity of using the parabolic 
equations, two–dimensional in the transverse coordinates, for 
the description of the SRS for B ≥ 100. The contour lines of 
the intensity of the Stokes radiation for individual realization 
of the random Stokes field, shown in Fig. 3 which can show 
the instantaneous intensity distribution at a certain random 
moment, are one more proof of this. The contour lines are  

given for the initial laser beam having the Gaussian shape for 
B = 300 and the value of the longitudinal coordinate 
corresponding to almost complete energy transfer into the 
Stokes beam. It can be seen that the solution is not 
axissymmetric.  

The calculations allow us to draw the following 
conclusions:  

1) The strong dependence of the average intensity of 
the transmitted beam on the shape of the incident beam is 
found to occur for a small incident beam power (the 
intensity varies by a factor of 3–4).  

2) For large power this dependence is weak.  
3) The number of the inhomogeneities of the 

transmitted beam depends on the incident beam shape for 
the entire range of variations of the incident beam power.  
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