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A comparative analysis of two variants of reconstruction of an estimate of the 

Fourier spectrum phase of an image from a series of its short–exposed distorted 
images is performed from the viewpoint of stability with respect to the detection 
noise. It is shown that in practice we can restrict ourselves to only one of these 
variants.  

 
Post–detector processing of a series of short–exposed 

images (SEI's) of an object being observed with the purpose 
of estimating its undistorted image is one of the simplest 
approaches to solve the problem of vision through the 
Earth's turbulent atmosphere. Now the theoretical 
development of these methods which are generally called in 
astronomy as speckle interferometry has been, for the most 
part, finished1 and the agenda turns to the problem of 
studying their stability with respect to various additional 
(atmospheric distortions of the SEI's.2,3) In this paper we 
consider the effect of these distortions, which arise, e.g., 
when recording the SEI's on negatives.  

From the viewpoint of mathematics, the optimal 
processing of the SEI's reduces to a Fourier transform of 
their intensity distributions J(x), a formation of the series–
averaged correlation parameters of the obtained Fourier 

spectra J
~
(f) based on the formula  
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and the estimate of the modulus and the phase φ(f) of the 

Fourier spectrum O
~
(f) of the undistorted (sought–after) 

image of the object O(x) by solving the equations  
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Here, <.> denotes an averaging over the series; S(f
1
, f

2
) is the 

correlation function for the Fourier spectra of the detection 
noise, which is well known a priori; σ

H
2(f) is the a priori 

known mean squared modulus of the optical transfer function 

of the system atmosphere–telescope q
~
(f) = Z(f, f)/S(f, f) is 

the mean signal–to–noise ratio being experimentally estimated 
at the frequency f; f

p
 are the Fourier frequencies closest to f

0
 

and specified, e.g., by the discrete Fourier–transform 

algorithm; and  b(f
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weighting factor, which characterizes the relative accuracy Ψ. 
As regards the experimentally obtained estimate of the phase 
difference Ψ(f
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), in the case in which the signal–to–noise 

ratio is small, it is determined as arg Z(f
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Unfortunately, we failed to find theoretically the precise 

boundary of the change over from one variant to another. 
Moreover, in practice it is also difficult to calculate the 
distribution of the ratio q(f). In this connection, a working 
formula based on the analysis of the proper distributions J(x) 
of the starting SEI's, which enables one to make the above–
indicated choice, is of interest. In order to obtain it, numerical 
simulation, which consisted in playing out 40 random 
realizations of the SEI's (for the fixed O(x)) with noise 
superimposed on the distributions of I(x) as 
J(x) = I(x) + n(x), where n(x) is the normal "white" noise 
with zero mean and variance 2

n, in reconstructing from them 

the estimates O
r
(x) of the image for both variants of 

determining the phases Ψ, in calculating the normalized errors 
of reconstruction from the formula  
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and in constructing the dependences of E on the signal–to–
noise ratio Q = <I>/σ

n
. Some values of the obtained 

dependences are presented in Table I, in which the 
subscripts 1 and 2 at E correspond to the first and second 
variants of estimating Ψ (in terms of arg Z). Note that by 
virtue of randomness of samplings of the 40 SEI's from the 
statistical ensemble of possible realizations these values are 
also random. However, an additional simulation has shown 
that the spread of these values does not exceed 10%. When 
analyzing these dependences, we must take into account 
that the information about the fine structure of the image is 
coded in the distributions of the intensity fluctuations of 
the SEI's above and below the mean distribution <I>, while 
the speckle interferometry methods reduce to extracting 
data from the average parameters of these fluctuations. The 
contrast of the fluctuations K defined as the ratio of their 
variance σ2

I
 to <I>2 is approximated by the relation5 
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are the spectral, temporal, and spatial components of the 
contrast. Here Δλ is the width of the spectral range of  
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optical radiation used when recording the SEI's, T is the 
exposure time per the SEI's, Δλ

c 
and T

c
 are the wavelength 

correlation interval and the correlation time for atmospheric 
distortions, S is the angular surface area of the object being 
observed, S

t 
= (λ/D)2 is the resolution of the employed 

telescope of diameter D, S
A 

=(λ/r
0
)2 is the mean resolution 

of the atmosphere, λ is the wavelength, and r
0
 is Fried's 

parameter. From the viewpoint of speckle interferometry, it is 
natural to define the signal–to–noise ratio as q = σ2

I
/σ2

n = KQ2. 

It should be noted that the image– and spectrum–averaged 

values q and q
~
 are comparable. Simulation was carried  

out for K
t
 = K

λ
 = 1 and K = K

0
≈ 1/70. The first variant 

has proved to be more preferable than the second one for 
q ≤ 3 alone.  
 

TABLE I. Normalized error variance E of image 
reconstruction based on 40 distorted images 
J(x) = I(x) + n(x) for different signal–to–noise ratio Q 
(Q = <I>/σ

n
).  

 

q ∞ 100 20 10 5 
E

1
 

0.088 0.094 0.165 0.197 0.279 

E
2
 

0.088 0.094 0.151 0.209 0.281 

 
 

 
 

FIG. 1. Reconstraction results from 40 distorted (J(x) = IC(x) + n(x)) short–exposed images I(x): the characteristic 
original image I(x) (a) and the images reconstructed for Q = 100 and C = I, Q = 10 and C = 1, and Q = 100 and 
C = 0.7 (b, c, and d), where Q = <I>/σn.  

 
TABLE II. Normalized error variance E of image reconstruction based on 40 distorted images 

J(x) = I 
C
(x) for different exponent C.  

 

C 

0.5 0.7 0.9 1.0 1.1 1.3 1.5 2.0 
E

1
 

0.441 0.240 0.116 0.088 0.098 0.118 0.169 0.842 

E
2
 

0.534 0.162 0.103 0.088 0.089 0.118 0.258 0.906 
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We have additionally investigated the sensitivity of 
both variants to nonlinear distortions of the form 

J(x) = I
C
(x). These distortions may arise when 

transforming the distributions of optical densities from 
negatives of the SEI's into the corresponding intensity 
distributions owing to an inaccurate knowledge of the 
contrast ratio. The results given in Table II show that 
when 1.3 ≥ C ≥ 0.7 the second variant is more preferable 
than the first. For illustration, the Fig. 1 shows the 
typical reconstruction results.  

In conclusion it should be emphasized that in 
practice usually Q ≤ 30, K

t 
≈ K

λ 
≈ 0.5, S

0 
> S

A 
. S

T
, and 

K
0
 ≈ (r

0
/D)2 ≤ 0.01. As a result, it turns out that q ≤ 3, 

which leads to an inference that it is necessary to use the 
conventional estimate of the phase difference from the  

mean correlation products of the Fourier spectra of 
images.  
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