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Simultaneous effect of the random interface and of the large–scale volume 
inhomogeneities of the medium on the backscattering intensification in laser sensing 
through the interface is considered. The approximate relations for the radiation 
pattern of the bounded beam, reflected from the thin diffusely scattering layer lying 
behind the random interface are derived. 

 

1. Introduction. In sensing the randomly 
inhomogeneous media, the description of the signal 
reception by collocated transmitting and receiving systems 
is difficult because it is necessary to take into account the 
coherent backscattering intensification effects, being outside 
the scope of the classical theory of radiative transfer. At 
present much attention is devoted to these effects (see, for 
example, Refs. 1–5) caused by various mechanisms.6  

In this paper we consider the simultaneous effect of 
two factors, i.e., refraction on the random interface and 
scattering by the large–scale volume inhomogeneities of the 
medium. Such a problem can arise in many applications. It 
is sufficient to point out lidar sensing of the upper layer of 
the ocean7,8 as well as sensing through glacial surfaces and 
snow covers. Here we will confine ourselves to the case of 
the large–scale media which allows a "causal" description 
within the frameworks of the parabolic approximation and 
the Huygens––Kirchhoff phase approximation9,10 adjacent 
to it.9,10 We take as a reflector the diffusely reflecting thin 
layer lying behind the random interface in a randomly 
inhomogeneous medium. We concentrate our attention on 
the description of radiation pattern in terms of the 
generalized brightness.11 At present this notion is widely 
used in theoretical works and hardly ever in practical 
calculations. The demonstration of the convenience of this 
notion is one of the aims of this paper.  

2. Formulation and formal solution of the problem. Let 
the source and the receiver be located in the plane z = – d 
and sensing be carried out though the random interface at 
z = ξ(ρ), where ρ = (x, y, 0) (ξ(ρ) is the random function 
with zero mean <ξ> = 0), between the media with 

permittivities ε
1
 = 1 and ε

2
 = ε

–
2
 + ε~(r), where ε

–
2 
is the mean 

value, ε~
2
(r) describes the weak fluctuations, <ε~

2
> = 0, and  

<ε~2
2
> n ε

–2
2
   (Fig. 1).  

Assuming all inhomogeneities to be large–scaled, we 
employ the approximation of parabolic equation for the 
description of the propagation of narrow beams in each 
medium. The propagation through the random interface we 
also describe approximately, with the rough boundary being 
replaced by the plane phase screen positioned at z = 0 with 
the run–on of the phase ψ(ρ) = (k

2
 – k

1
) ξ(ρ), where 

k
1,2

 = k
0

ε
–

1,2
 and k

0
 is the wave number in free space.  

 

 
 

FIG. 1. Geometrical diagram of the problem. 
 

In addition, we will assume that the incident wave is 
reflected in the plane z = L from the thin layer of the small–
scale scatterers described by the delta–correlated random 
reflection coefficient r(ρ) (<r> = 0, <r(ρ) r(0)> = Rδ(ρ), 
where R ≥ 0 means the energetic reflection coefficient). For 
the bounded beam of radius a the assumption on delta–
correlated r(ρ) is applicable only for not too short paths 
L . kalk, where k is the wave–number and lk is the 

characteristic size or the correlation length of the scatterers in 
the so–called statistically far zone of diffraction.12  

Under these assumptions the propagation of the 
radiation along the section of the path (–d, 0) is reduced to 
the problem of free diffraction of the partially coherent 
light. This problem has been studied in detail. As to the 
second moment of the radiation field, the description of the 
free propagation of radiation has the simplest form in terms 
of generalized brightness11 
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× exp(–ik
0
nρ) d2ρ , (1) 

 

for which the transition from z = – d to z = 0 is reduced to 
the translation of the argument  

 

I(R, n, 0) = I(R – nd, n – d) , (2) 
 

i.e., it is quite trivial. Taking this into account, we see that 
it is sufficient to examine the characteristics of the reflected 
beam in the plane z = 0, expressing them in terms of the 
analogous characteristics of the incident beam in the same 
plane, i.e., to describe the propagation of radiation along 
the path 0 → L → 0. In the diagram notation this relation 
has the form  

 

u(–) = ×–0–× u(+) . (3) 
 

Here u (+) and u (-) are the amplitudes of incident and 
reflected waves in the plane z = 0, the propagation lines 
correspond to the Green's operators  

 

– = G  (±)
z, z0

 , (4) 

 

describing the propagation of radiation in the directions ± z 
and satisfying the parabolic equations, the symbol t

±
 

describes the propagation though the interface  
 

× = t
±
e 

i Ψ , 
 

t
±
 are Fresnel's coefficients, characterizing the passage 

through the interface in the directions ± z, which are taken 
for the normal incidence of the planar wave, and the symbol 
0 = r(ρ) denotes the reflectance.  

It follows from Eq. (3) that the moments of the nth 
order of the reflected wave amplitude are expressed in terms 
of analogous moments of the 2 nth order of the Green's 
function describing the propagation in the forward 
direction. Thus, for example, the coherence function of the 
reflected radiation field in the composite algebraic–diagram 
notation can be written as  

 

Γ = 

_  _ 

0
 _  _ 

u(-)  0

u(-)  0

 

= Γ

× ×

× ×

 , (5) 

 

where the functions in the lower row are complex 
conjugate. Four propagation lines (–), i.e., the fourth 
moment of the Green's function, enter into relation (5).  

Although relation (3) is formally the complete solution 
of the problem, the explicit form of the operators G  (±)

z, z0
 

entering into it is unknown. Using Eq. (3) we can obtain 
the equations of the Markovian approximation for the 
arbitrary moments of the amplitude u(–) (Refs. 13–16 and 
10) whose rigorous solution with the exception of the 
equations for the first moment <u (–)>, is unknown either. 
Below we make use of the simpler Huygens–Kirchhoff 
phase approximation, first proposed in Ref. 9, which 
enables us to express arbitrary statistical moments of the 
reflected wave field in quadratures. In this approximation 
the unperturbed Green's function is multiplied by the phase 
factor exp(iψ

ε
 (ρ, z)), where ψ

ε
 (ρ, z) is the run–on of the 

phase in the direction of the ineident beam, joining the 
points (0, 0) and (ρ, z).  

 

The use of the above–indicated approximation for the 
description of the volume inhomogeneities enables us to 
write easily relation (5) for Γ in the explicit form  

 

Γ(R, ρ) = C ⌡⌠
 
 exp(2i κρ δ – ϕ(ρ, δ)) Γ

0
(R – δ, –ρ) d2δ , (6) 

 

where C =  
k
π t

+
t
–

2

R and κ = 
k2

2L . Analogous relation for 

the generalised brightness has the form  
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Here Γ
0
 and I

0
 are the coherence function and 

brightness of the incident wave u (+)(R, 0), the function 
ϕ(ρ, δ) = ϕ

ξ
(ρ, δ) + ϕ

ε
(ρ, δ) describes the simultaneous effect 

of the interface fluctuations ξ and volume fluctuations ε,  
 

ϕ
ξ,ε
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⊥ξ,ε

(ρ) + D
⊥ξ,ε
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1
2 (D⊥ξ,ε

(ρ + δ) + 

 

+ D
⊥ξ,ε
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where  
 

D
⊥ξ

(ρ)=<(ψ(ρ) – ψ(0))2> and D
⊥ε

(ρ)=<(ψ
ε
(ρ, 0) – ψ

ε
(0, 0))2> 

(9) 
are the structure functions of corresponding runs–on of the 
phase. The fluctuations ξ and ε are assumed to be 
independent, Gaussian, and statistically uniform.  

By integrating Eq. (7) over R we obtain the following 
relation between the radiation patterns of the reflected J (n) 
and incident J

0
(n) beams:  

 

J (n) ≡ ⌡⌠
 
 I (R, n)d2R =  

k
0

2p 
2
 C ⌡⌠

 
 ⌡⌠

 
 ⌡⌠

 
 exp(2i κρδ – 

 

– ϕ(ρ, δ) – ik
0
(n + n′)ρ) J

0
 (n′) d2δ d2ρ d2δ d2n′ . (10) 

 

Relations (6) and (7) are equivalent and describe the 
problem in (R, ρ) and (R, n) representations, respectively.  

It is convenient to calculate the reflected wave 
intensity <⏐u(–)(R)⏐2> = Γ(R, 0) in the plane z = 0 with 
the use of Eq. (6), while Eq. (10) yields the radiation 
pattern of the reflected beam.  

3. Unperturbed problem. In order to estimate the 
contribution of fluctuations in the medium, let us first 
consider the unperturbed problem, i.e., without 
fluctuations. In this case ϕ(ρ, δ) ≡ 0, so that relations (6), 
(7), and (13) take the form  
 

Γ(R, ρ) = C ⌡⌠
 
 exp(2iκρδ) Γ

0
(R – δ, –ρ) d2δ , 

 

I(R, n) = C
0
 ⌡⌠

 
 I0

(R – L(n + n′)/
–
ε

2
, n′) d2n′ , (11) 

J(n) = C
0
 ⌡⌠

 
 J0

(n′) d2n′ , 

where C
0
 =  

κ
0

2π t+t–

2

R . In the simplest case of a collimated 

beam without reflection  
 

I(R, n, 0) = I
0 

Θ (R) δ(n – n
0
) , (12) 
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where Θ(R) describes the envelope (Θ(0) = 1), we have  
 

I(R, n) = C
0
I
0
 Θ (R – L(n + n

0
)) , 

 

J(n) = C
0
I
0 

Σ. (13) 
 

Here Σ = ⌡⌠  Θ(R) d2R (14) 

 

is the effective cross–sectional area of the beam. The 
physical sense of these relations is quite apparent, i.e., the 
collimated beam is incident at an angle to the reflecting 
plane located at z = L, as shown in Fig. 2.  
 

 
 

FIG. 2. Reflection of the paraxial beam from the layer of 
the diffuse scatterers in the homogeneous medium: 
Unperturbed porblem. 
 

After reflection the beam becomes delta–correlated, i.e., 
isotropic, so that the radiation observed in the direction n 
can be seen as an illuminated spot in the plane z = 0 being 
displaced with respect to the initial spot along the vector 
L(n + n

0
). In addition, the angular width of the scattering 

phase function of the reflected radiation observed from the 
point R is determined by the observation angle of 
illuminated spot, as it is shown in Fig. 2, while the total 
brightness is isotropic. This simple geometry is described by 
relations (13).  

4. Effect of the fluctuations in the medium: the 
Gaussian approximation. In evaluating the contribution of 
fluctuations in the medium to the backscattering 
intensification effect, we confine ourselves for simplicity to 
the case of a collimated beam (Eq. (12)). Then in 
accordance with Eq. (7)  

 

I(R, n) =  
k

0

2π 
2
 CI

0
 ⌡⌠

 
 ⌡⌠

 
 exp(2i κρδ – ϕ(ρ, δ)) – 

 
– ik

0
(n + n

0
)ρ) Θ (R – δ) d2ρ d2δ . (15) 

 
The value θ = n + n

0
 entering into the integrand of 

Eq. (15) describes the angular deflection from the 
backscattering direction, so that for scattering in the 
backward direction the angle ⏐θ⏐ = ⏐n + n

0
⏐ = 0. In 

addition, in the case of unbounded beam (Θ(R) = 1) the 
integral entering into Eq. (15) agrees to within a factor 
with the fourth moment (average squared intensity) for the 
planar incident wave. This agreement is due to the double  

passage of radiation through the same inhomogeneities of 
the medium. As a result, the calculation of the second 
moment of the reflected–wave field is equivalent to the 
calculation of the fourth moment of the wave propagating 
in the forward direction.  

Significant difficulties arise when one attempts to 
estimate the multiple integral entering in to Eq. (15). In 
general, this estimate can be obtained only in the limiting 
cases of weak and strong fluctuations. In the first case 
various approaches of the perturbation theory may be 
employed, while in the second case the fluctuations of 
radiation incident on the reflecting plane are close to the 
Gaussian and, therefore, the calculation of the fourth 
moment of the radiation field may be reduced to the 
calculation of the second moments of this field. Let us first 
consider this simple case.  

It is well known that the fluctuations of the wave 
incident on the reflecting plane are close to the Gaussian on 
the long path in the regime of multiple ray propagation (or 
in the saturation region), where many rays arrive at each 
point. For this region we can write down in the diagram 
notation of Eq. (5)  
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£ §

§ £
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where dashed lines denote pairwise averaging of joined 

multiplyers ×– and –×, i.e., an account of the Green's 
function correlations.  

The correlation between forward and backward waves 
is neglected in the first term of Eq. (16), whereas in the 
second term this correlation is taken into account. Note that 
the Gaussian approximation (16), generally speaking, does 
not employ the Huygens–Kirchhoff phase approximation.  

In accordance with Eq. (16), formula (15) can be 
approximately disintegated into two terms, corresponding to 
two terms in Eq. (16):  

 
I(R, n) = I

1
(R, n) + I

2
(R, n) . (17) 

 
Here I

1
 and I

2
 are given by Eq. (15), in which ϕ(ρ, δ) 

must be replaced by ϕ
ρ
 ≡ ϕ(ρ) ≡ D

⊥ξ
(ρ) + D

⊥ε
(ρ) and by 

ϕ
δ
 = ϕ(δ), respectively. Thus we have for I

1
 the integral 

 

I
1
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k
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2π 
2
 C I

0
 ⌡⌠
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 exp (2iκρδ – ϕ

ρ
 – 

 
– ik

0
(n + n

0
)ρ) Θ (R – δ) d2ρ d2δ , (18) 

 
which can be simplified in the case of the Gaussian envelope 

Θ(R) = e–αR2
  

 

I
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k
0

2π 
2
 C 

π
α I
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while I

2
 can be calculated in the explicit form  
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I
2
 = C

0
I
0
 Θ (R – L(n + n

0
)) exp [ – ϕ((n + n

0
) L)] , (20) 

 

and differs from the corresponding value in the case of free 
propagation described by Eq. (13) only in the exponential 
factor alone.  

Integrating both sides of Eq. (17) over R we obtain for 
the total brightness the representation J(n) = J

1
(n) + J

2
(n) 

in analogy with Eq. (20), in which the value  
 

J
1
(n) = C

0
 Σ (21) 

 

is isotropic, i.e., is independent of n, while the value  
 

J
2
(n) = C

0
 Σ exp [ – ϕ((n + n

0
)L)] (22) 

 

is maximum in the backscattering direction.  
Let us analyze the physical meaning of the obtained 

relations. The value I
1
 describes the brightness distribution 

in the transverse cross section of the reflected beam 
disregarding the correlation between the forward and 
backward waves and I

2
 describes this correlation in the 

Gaussian approximation. The meaning of I
1
 can be easy 

understood from the step–by–step analysis of the wave 
propagation along the path 0 → L → 0. During the passage 
of the section 0 → L, the incident collimated beam is 
broadened due to small–angle scattering, so that the 
illuminated spot in the plane z = 0, analogous to the 
unperturbed case, displays at the distance of the order of 
Ln

0
, but has a larger diameter (Fig. 3). Radiation reflected 

from the plane z = L is assumed to be isotropic and, in 
addition, during its propagation in the backward direction 
L → 0 the reflected beam undergoes additional broadening 
due to small–angle scattering. As a result, the brightness 
distribution of the reflected beam I

1
 is a function of the 

angle of observation of the illuminated spot in the plane 
z = L and of the fluctuations in the medium. This can be 
seen from Eq. (18). In addition, in accordance with 
Eq. (21), the scattering phase function of the reflected beam 
as a whole remains isotropic.  

 

 
 

FIG. 3. Meam directional pattern of the reflected beam 
with fluctuations of the medium taken into account. 

 

These considerations disregard the correlation between 
the forward and backward waves. These correlations are 
described by relations (20) and (22) and are the result of 
double passage of radiation through the same inhomogeneities 
of the medium. Since these inhomogeneities, generally 
speaking, have finite dimensions, the corresponding brightness 
I
2
 given by Eq. (20), irrespective of the diameter of the 

illuminated spot in the reflection plane, is concentrated near  

the spot of the incident radiation at the distance (n + n
0
)L, 

which is determined by the exponential factor in Eq. (20). The 
value of the maximum distance from the incident beam 
ρ

0
 = (n + n

0
)L, at which the intensification of backscattering 

is pronounced (i.e., the function I
2
 differs strongly from zero), 

is estimated from the condition ϕ(ρ
0
) = 1, so that ρ

0
 coincides 

with the coherence length for the spherical wave after it has 
passed the path (0, L).  

The total intensity I
2
 given by Eq. (22) and associated 

with the intensification effect is anisotropic. It is 
concentrated near the backscattering direction within the 
intensification angle ⏐n + n

0
⏐ = θ ∼ ρ

0
/L. For the strictly 

backward scattering direction θ = 0 the contributions given 
by Eqs. (21) and (22) are identical, so that the 
intensification results in a twofold increase in the 
backscattering intensity.  

The distribution of the generalized brightness in the cross 
section of the reflected beam is illustrated in Fig. 3. The 
distributions I(R, n) are shown for two points, that is, for R

1
 

lying inside the illuminated spot where I = I
1
 + I

2
 has the 

maximum in the direction of backscattering, and for R
2
 lying 

outside the illuminated spot, where I
2
 = 0 and the brightness 

of the reflected beam I = I
1
 are practically isotropic.  

5. Simultaneous effect of the volume and interface 
fluctuations in the medium in the region of saturation. In 
the region of the saturated intensity fluctuations the 
solution of problem (16) is expressed in terms of the second 
moments of the Green's function. Therefore, it is sufficient 
to consider the simultaneous effects of the volume and 
interface inhomogeneities on the second moments rather 
than on the fourth moments as in the general case described 
by Eq. (5).  

Let us restrict ourselves to the description of the total 
brightness of the reflected beam J = J

1
 + J

2
 and define the 

amplification factor γ as the ratio of the total brightness to 
its isotropic component, that is, γ = (J

1
 + J

2
)/J

1
. In 

accordance with Eqs. (21) and (22), we have  
 

γ – 1 = exp ( – ϕ(θL)) = γ
ξ
(θL) γ

ε
(θL) , (23) 

 

where γ
ξ,ε

 = exp( – D
⊥ξ,ε

) and θ = n + n
0
 is the angle of 

deflection from the backscattering direction.  
According to Eq. (23), the angular dependence of the 

amplification coefficient is determined by the product of 
two factors associated with the interface fluctuations ξ and 
volume inhomogeneities ε. In addition, in the Gaussian 
approximation the rate of decay of the amplification 
coefficient from the value γ = 2 for the backscattering 
direction to the value γ = 1 for larger angles is determined 
by the behavior of the structure phase functions D

⊥ξ
 and 

D
⊥ε

. In accordance with Eq. (9), these functions are 

expressed as follows:  
 

D
⊥ξ

(ρ) = k
0
2 ( ε

–
 – 1)2 D

ξ
(ρ) , 

 

D
⊥ε

(ρ) = 
k

0
2

4  L ⌡⌠
0

1

 
 ds ⌡⌠

 
 dξ [D

ε
(ρs, ξ) – D

ε
(0, ξ)] . (24) 

 
Here D

ξ
(ρ) = <(ξ(ρ) – ξ(0))2> and D

ε
(ρ) = <(ε(ρ) – ε(0))2> 

are the structure phase functions of ξ and ε.  
It can be seen from Eq. (23) that the typical 

intensification angle θ
i
 near the backscattering direction,  
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within which the intensification effect is strong, is of the 
order of θ

i
 = ρ

c
/L, where ρ

c
 is the coherence length for the 

spherical wave transmitted through the path (0, L), 
determined from the condition  

 
D

⊥ξ
(ρ

c
) + D

⊥ε
(ρ

c
) = 1 . (25) 

 
In the case of large run–on of the phase, the structure 

functions D
⊥ξ

 and D
⊥ε

 can be often approximated by the 

power–law functions assuming D
⊥ξ,ε

(ρ) = (ρ/ρ
ξ,ε

) ν
ξ,ε

 (for 

the one–scale nature of fluctuations γ
ξ,ε

 = 2 and for 

Kolmogorov's spectrum of turbulent fluctuations γ
ξ
 = 5/3). 

It can be easy seen that the parameters ρ
ξ
 and ρ

ε
 mean the 

coherence lengths corresponding to the fluctuations ξ and ε, 
taken separately, and Eq. (25) can be considered as 
"nonlinear law of addition" of coherence lengths17  

 

⎝
⎛

⎠
⎞ 

ρ
c

ρ
ξ

 

ν
ξ

 + 
⎝
⎛

⎠
⎞ 

ρ
κ

ρ
ε

 

ν
ε

 = 1 . (26) 

 
In general this equation is transcendental, but in the 

case in which the values D
⊥ξ

 and D
⊥ε

 change similarly, the 

solution of the equation for ν
ξ
 = ν

ε
 = ν is trivial: 

ρ
c
 = ρ

ξ
ρ
ε
/(ρν

ξ
 + ρν

ε
)1/ν. 

The above–considered case corresponds to that when 
only the phase fluctuations are present in the medium. It 
can be shown that in the case in which the medium contains 
the particles (in general, the absorbing particles) being large 
in comparison with the wavelength, then in the right side of 
Eq. (23) the additional factor appears  

 
γp(θL) = exp [ – Dp(θL)] , (27) 

 
where the explicit form of Dp(ρ) depends on the model of 

the particles. For example, for optically soft and 
uncorrelated particles we have18  

 

Dp(ρ) = cL⌡⌠  <exp [i(l(ρ′) – l*(ρ + ρ′))] – 1> d2ρ′ . (28) 

 

Here c is the particle number density and l(ρ) is the 
additional run–on of the phase caused by the particle when 
the beam penetrates through it at the point ρ. In the case of 
strongly absorbing particles Iml (ρ) . 1 Eq. (28) transforms 
into  

 

Dp(ρ) = 
⌡⌠

<2η(ρ′) – η(ρ′) η(ρ – ρ′)> d2ρ′ , (29) 

 

where η(ρ) is the characteristic function which is equal to 
unity in the region of the shadow from the particle and to 
zero outside of the shadow, in accordance with the black 
screen model.19  

6. The effect of the fluctuations in the medium: the 
general case. In general, in analogy with Gaussian 
approximation (16), the contribution of the fluctuations in 
the medium strongly depends on the shapes of spectra of ξ 
and ε. The detailed study of Eqs. (6) and (7) providing the 
approximate solution of the problem, is rather a complicated 
problem and remains outside the scope of this paper. We 
only make some comments. First of all, note that in the case 
in which the observation point in the plane z = 0 is far from 
the illuminated spot, the direct and reflected waves 
propagates through the different inhomogeneities of the  

medium and, as a result, the correlation between them is 
negligible. Therefore, far from the illuminated spot the 
generalized brightness may be given by formula (19), in 
which this correlation is neglected. This formula takes into 
account the first term in the right side of Eq. (16).  

Further, in general, in contrast to the case of the 
Gaussian approximation, the generalized brightness of the 
reflected wave is a function of the fourth moments rather 
than the second moments of the Green's function, so that 
the basic characteristic of the second moment, that is, the 
coherence length ρ

c
, is no longer the basic characteristic 

parameter of the problem. The quantities, such as the 
characteristic curvature of the phase front (or the length of 
focusing) F, as well as the radius of the statistical Fresnel 
zone ρ

ϕ
20 which is related with F by the equation F = k ρ2

ϕ
, 

start to play an important role along with ρ
c
.  

In order to illustrate the above discussion, we consider 
the case of the planar incident wave I

0
(R, n) = δ(n – n

0
). In 

this case for the backscattering direction n = – n
0
 from Eq. (7) 

we have  
 

I(R, –n
0
) =  

k
0

2π 
2
 C ⌡⌠

 
 ⌡⌠

 
 (2i κρδ – ϕ(ρ, δ)) d2ρ d2δ (30) 

 
(the same equation can be derived for the total intensity 
J (– n

0
) of the bounded colimated beam given by Eq. (13)).  

It is natural that relation (30) is independent of the 
choice of the point R. It is of interest to examine Eq. (30) 
as a function of the reflecting layer depth L.  

The integral appearing in Eq. (30) agrees to within the 
factor with the relation for the mean squared intensity of 
the radiation propagating behind the generalized phase 
screen.20 The asymptotic behavior of these integrals in the 
case of strong fluctuations in the run–on of the phase was 
studied in the literature in detail (see Ref. 20). The typical 
behavior of Eq. (30) as a function of the path length L in 
the case of the one–scale nature of fluctuations ξ and ε is 
wellknown. Starting from its initial value at z = 0, 
corresponding to the case without fluctuations, the right 
side of Eq. (30) increases up to its maximum value in the 
region of focusing z g F, and then decreases down to the 
value being two times larger than the initial one in the 
saturation region. In the case of fluctuations with power–
law spectrum the maximum of Eq. (30) is usually 
pronounced much weaker than in the case of the one–scale 
nature of fluctuations and may even be absent at all. The 
investigation of the reflected beam brightness in ample 
detail is beyond the scope of phase approximation (30) as 
well as the study of the behavior of the fourth moments of 
the Green's function which may be based, for example, on 
the well known equations of the Markovian approach.12  

7. On the possibility to compensate for the effect of 
the rough interface in laser sensing of the upper layer of 
the ocean. The above–considered effects result in strong 
fluctuations in the pulse shape of the reflected beam in laser 
sensing of the upper layer of the ocean. The inhomogeneities 
are primarily related to the refraction at the water–air 
rough interface so that the pulse shape decay is no longer 
exponential and the spikes and fluctuations arise which may 
be especially strong in the region of focusing. For adequate 
description of the statistical properties of these fluctuations 
the characteristics of the surface roughness, including 
standard deviation of the heights of the surface roughness 
σ
ξ
, its slopes σ

θ
 and curvature σ

ν
, are needed, in addition, 

the surface roughness curvature has the strongest effect on 
focusing.  
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In the case of the one–scale nature of fluctuations the 
curvature σ

ν
 is related with σ

θ
 and σ

ξ
 by the expression 

σ
ν
 ∼ σ2

θ
/σ

ξ
. Thus, first of all it is necessary to determine 

two independent parameters. In order to estimate these 
parameters, the measurements of the parameters of the 
signal reflected from the interface may be used.  

It is well known that in the case of large heights of 
the surface roughness the reflected radiation intensity is 
determined primarily by slopes, i.e., it is a function of σ

θ
, 

which can be retrieved from the data on the angular 
dependence of the backscattered signal. The second 
necessary parameter can be retrieved from any additional 
measurement, for example, of the radiation field correlation 
or of the correlation of reflected radiation intensity. After 
that, employing the model of surface roughness and using 
the above–given relations, the shape of the pulse averaged 
over the ensemble of realizations can be estimated, which in 
accordance with the above–indicated facts, generally 
speaking, is nonmonotonic and has the maximum in the 
region of random focusing.  

8. On other mechanisms of backscattering 
intensification effect. Above we have considered the case 
of large–scale scattering media and random interfaces 
allowing the causal description. In the foregoing 
formulation of the problem, the solution has the 
relatively simple form because the radiation during its 
propagation undergoes only single backscattering. 
Meanwhile, the intensification effects can be observed in 
many other cases under conditions of both single 
backscattering and multiple backscattering. In practice 
we have the variety of different physical mechanisms of 
the intensification which are not considered in the paper. 
The great number of these mechanisms were summarized 
in Ref. 6, in which many problems were mentioned, 
which were responsible for the intensification, such as 
various cases of scattering by the discrete and continuous 
inhomogeneities and by the transparent phase and 
absorbing scatterers, of propagation through the random 
interfaces, and of reflection from the rough surfaces in 
the regimes of near – and far–difraction zones with 
respect to the reflectors. In some cases an account of the 
intensification effect may result in only small corrections, 
whereas in the others the intensification effect produces a 
significant change in the averagely reflected radiation 
intensity.  

 

Thus, when describing backscattering in the randomly 
inhomogeneous media, one must take into account the 
backscattering intensification effect whose ignorance may lead 
to large errors.  
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