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The Radon transform, which is the basic transform of computational tomography, 
a used to reconstruct the phase distribution of the wave field and the coefficients of 
expansion in a system of Zernike polynomials from the measurements of the tilts of the 
wavefront with the help of the Hartmann sensor is discussed. The algorithms which 
can be used to reconstruct the phase front and to determine the amplitudes of its 
modes for arbitrary dimensions and positions of the subapertures are constructed. The 
accuracy of reconstruction is evaluated in the numerical experiment. 

 
When creating adaptive optical systems and devices 

intended for quality control of the optical parts a considerable 
attention is devoted to the development of the wavefront 
sensors. In particular, the Hartmann sensor can be used to 
obtain the estimate of average derivative of the phase at the 
points of the subaperture centers.1,2 These data should be 
converted into the values of phase. The existing algorithms of 
such conversion are based on the representation of derivatives 
in terms of finite differences with subsequent solution of a 
system of linear algebraic equations. The other numerical 
methods can be also used. This approach to a certain degree 
makes it difficult to estimate the quality of the wavefront 
reconstruction in the presence of noise and makes it impossible 
to choose effectively dimensions and shapes of subapertures 
and positions of sensors. 

To solve this problem, we propose in the present paper 
the integral representation relating the phase to the values of 
its partial derivatives. On this basis the analytical relations are 
derived for evaluation of the tilt, defocusing, astigmatism and 
other modes of the expansion of phase in a system of Zernike 
polynomials1 avoiding the stage of reconstruction of the phase 
itself. The effectiveness of this approach is studied in the 
numerical experiment. 

To derive the corresponding relation for 
reconstruction of the phase S(x, y) from its partial 
derivatives μ(x, ó) = ∂S(x, y)/∂x, ν(x, ó) = ∂S(x, ó)/∂ó, 
we will write the inverse Radon transform3 

 

 (1)

 
 

where  
 

 (2) 

 

is the direct Radon transform. Integral (1) is defined in the 
sense of its principal value. The meaning of the variables 
entering into formulas (1) and (2) is clear from Fig. 1.  Let 

us write the expression for ∂S
∧
(θ, ρ)/∂ρ in terms of the 

derivative with respect to the direction 

 (3)
 

 
Substituting Eq. (3) into Eq. (1), using the property of δ–
function, and integrating over the angular variable θ, we 
obtain 
 

 (4)
 

 
The functions ν(ρ) and μ(ρ) are finite, i.e., 
 

 (5)
 

 

where R is the aperture radius, supp f is the carrier of the 
function f. 

 

 
 

FIG. 1. 
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Relation (4) determines the phase in terms of its 
partial derivatives. Taking into account Eq. (5) then 
Eq. (4) assumes the following form in the polar 
coordinate system: 

 

 (6)
 

 

where  is the characteristic Heaviside unit 

function. 
The expansion of the phase of the wavefront in a 

system of the Zernike polynomials1 is of interest 
 

 (7)
 

 

where Ψk are the Zernike modes describing the classic 
aberrations of optical systems. The Zernike modes are 
orthogonal within the circle of radius R. The aberration 
coefficients ak characterize the range of variation of the 
function S(x,y). 

Using integral representation (4) relating the phase to 
its gradient, we can derive the integral relation which can 
be used to obtain the coefficients ak in terms of the 
components of the gradient ∇S(x,y). 

Let us define the components of the vector  
a = (a1, a2, a3..., an): 

 

 (8) 
 

where 
 

 
 

is the norm and < f , g >  is the scalar product. 
Let us substitute Eq. (4) into Eq. (8) and after double 

integration over angular and radial variables we obtain the 
relations for the components of the vector a in terms of the 
gradient of the function S(ρ, ϕ): for the components of the 
vector a describing the contribution of the modes invariant 
under rotation 

 

 (9)
 

 

for the components of the vector a describing the 
contribution of the even modes 

 

 (10)
 

 

and for the components of the vector a describing the 
contribution of the odd modes 

 

 (11)
 

Here 
 

 (12)
 

 (13)
 

 (14)
 

 (15)

 
 

where m < n and n – |m| is even. So, the three first Zernike 
coefficients can be reconstructed from the gradient of the 
phase distribution with the use of the integral relations: 

 

 (16)

 

dy,

 
and 

 

,

 
 

where a1 and a2 are the tilts of the phase front with respect 
to the x and ó axes and a3 is defocusing of the phase front. 
The limits of integration  over  x ∈ [R,R]  and  over  

ó ∈ [–
 
R2 – x2, 

 
R2 – x2]. The coefficients ak can be used 

to obtain the signals of optimal control of an adaptive 
optical system with the finite number of degrees of 
freedom,2,3 since the problem of calculation of ak is identical 
(in the sense of minimizing the standard deviation) to the 
problem of optimization of approximation of an arbitrary 
function by Zernike polynomials. 

Based on integral representation (4), the algorithm 
has been developed which can be used to reconstruct the 
phase front and to determine the coefficients of expansion 
(7) in terms of the phase gradient ∇S. 
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In reconstructing the phase in terms of its gradient, 
the integrals were evaluated by Simpson's quadrature in the 
polar coordinate system. 

 

 
 
FIG. 2. Scheme of conversion of coordinates and limits of 
integration in the problem of phase reconstruction according 
to formula (6). 
 

To ensure a high accuracy, the integral was represented 
as a sum of two integrals 

 

 
 

where 
 

 
 
ρmax = R + ρ is the maximum distance between the 
observation point and the edge of the aperture, ρmin = R – ρ 
is the minimum one, and (ϕ, ρ) are the coordinates of the 
aperture centre in the coordinate system with the origin at 
the observation point. The limits of integration were 
determined by intersection of the coordinate grid (θj, ρj) 
and the boundary Γ of the carrier of the function θ(R2 –
 ⏐ρ – ρ′⏐2) (see Fig. 2). It is obvious that the integration 
limits are simplest, i.e., ρ′ ∈ [0,R] and ϕ ∈ [0,2π], when the 
point at which the phase is determined lies in the aperture 
centre. The integration limits are taken to be ϕ ∈ [0,2π] for 
ρ′ ∈ [0,ρmin] and ϕ ∈ [ϕmin,ϕmax] for ρ′ ∈ [ρmin,ρmax] (see 
Fig. 2). The number of readings in the interval of angles Nϕ 
was 60 and in the interval of radii Nρ was 30. 

To check the formulas and to simulate the 
reconstruction process, we took the function S1(x,y) 
comprising the sum of the first ten Zernike polynomials. 
These polynomials are given in Table I. 
 

TABLE I 
 

aê ê 

exact calculate.
Zernike polynomials, Ψk 

1 5 5.006 2x 
2 5 5.006 2y 

3 1.2 1.201 3[2(x2 + ó2) – 1] 
4 6 6.008 2 6 õó 

5 6 6.008 2 6 (õ2 – ó2) 
6 0.8 0.80002 2 2 y [3(õ2 +ó2) – 2] 

7 0.96 0.96055 2 2 x [3(õ2 +ó2) – 2] 
8 0.95 0.95003 2 2 y [3(õ2 – ó2)  

9 –1.5 –1.502 2 2 x (õ2 – 3ó2)  

10 –1.71 –1.711 6 5 [(õ2 +ó2)2 – (õ2 +ó2) + 1/6]
 

 

 

 

 

FIG. 3. Phase distribution over the aperture: a) initial 
distribution S1(x,y} b) distribution S2(x,y) reconstructed 
from formula (6), and c) distribution S3(x,ó) reconstructed 
from the calculated Zernike coefficients. 
 

Figure 3 shows the shape of the function. After we had 
determined the gradient of the function ∇S1(x,y) according 
to formula (5), we reconstructed the phase S2(x,y) and the 
Zernike coefficients were then evaluated from formulas 
(9) – (11). The values of the reconstructed coefficients a are 
also given in Table I. The function S3(x,y) was 
reconstructed from these coefficients 
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Figure. 3 shows the results of reconstruction of the initial 
function S1(x,y) and of the functions S2(x,y) and S3(x,y). 
The error of calculation of ak according to the quadrature 
Gauss formula does not exceed 10 %. 

Thus, the numerical experiment has shown the 
effictiveness of the proposed approach to the determination 
of the phase and corresponding coefficients of its expansion 
in a system of Zernike polynomials. In our opinion, it is 
interesting to study the accuracy and resolution of the 
proposed approach under conditions of fixed tilts of the 
phase front in real measuring systems. In addition, we are 
going to take into account an averaging of the tilts within 
the subapertures as well as configurations and positions of 
the subapertures. We are going to consider this problem on  

the basis of the calculation of the Strehl factor and to 
construct the point spread function (PSF) of the system 
"meter—algorithm". 
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