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We analyze the effectiveness of phase correction of distortions introduced in the 
wave by fluctuations of the refractive index of the atmosphere in the formation of 
images of astronomic objects. Two methods of modelling the phase distortions are 
described, based on generation either an ensemble of spectral amplitudes or random 
coefficients of aberrations. These methods are simultaneousy used in the calculations. 

 
Atmospheric turbulence is known to limit the angular 

resolution up to about 1 second of arc for observations of 
astronomical objects while the diffraction resolution is 
about 0.03 second of arc for observations made in the 
optical range (λ g 0.5 μm) with a telescope 3.6 m in 
diameter. There are three principal approaches to the 
problem of improving the resolution of an astronomical 
instrument: 

1. Recording of an ensemble of short–exposed images 
and their subsequent processing with the use of the 
correlation methods (speckle–interferometry);1  

2. Measurements of phase distortions of the wavefront 
and correction of these distortions in the course of 
observations (adaptive methods);2  

3. Simultaneous recording of short–exposed images 
and phase distortions of the wavefront of a reference source 
(beacon) with their subsequent processing. 

We will consider a telescope equipped with a system of 
correction of phase distortions of the wavefront. Lately 
considerable attention is devoted to the equipment of the 
available telescopes with such systems.6,7 At present at least 
three possible fields of astronomical investigations can be 
found in which the adaptive methods are widely used: 
1) spectrographic observations based on recording of the 
spectrum of the investigated object which simultaneously is 
a reference source for the system of recording of phase 
distortions of the wavefront, 2) studies of a protoplanet 
medium around the bright stars, in this case adaptive 
compensation reduces scattering on the coronograph optics, 
and 3) resolving the double and multiple stars with further 
processing of their short–exposed images by speckle–
interferometric methods or even without processing. In each 
of these cases adaptive methods reduce the time needed to 
record the astronomical information thereby improving the 
telescope performance. Thus constructing the adaptive 
telescope would be equivalent to designing a number of 
instruments without adaptive compensation. 

In this paper we present the results of calculation of 
the point spread function of the adaptive telescope with a 
circular aperture 1 m in diameter for the monochromatic 
wavelength λ = 0.55 μm. We are going to include a 
program imitating the operation of the wavefront sensor in 
our numerical model, but so far assume the phase distortions 
in the incident wave to be well known, and the results of 
our calculations illustrate only the limitations due to the 
finite number of the degrees of freedom of the phase 
corrector. We consider two types of phase correctors: the 
modal corrector, which compensates for aberrations from tilt 
to coma and the segmented mirror with a hexagonal 
structure. In contrast to Refs. 9 and 10, our program 
permits us to vary the number of elements in the segmented 
mirror. In addition, the authors of Refs. 5, 9, and 10 have  

not considered the effectiveness of aberration correction 
with a modal corrector. 

 
MODELING THE TURBULENT DISTORTIONS OF 

THE PHASE 
 
The technique employed for modeling the phase 

distortions introduced in a plane monochromatic wave by 
turbulent inhomogeneities of the atmospheric refractive 
index differs from the well–known techniques described in 
Refs. 5, 8, and 9, although it is also based on the Fourier 
transform of the spectral amplitude of the phase distortions. 
Essentially our scheme incorporates two independent 
programs. One of them generates the phase distortions by 
the method of the Fourier transform. The spatial scale of 
these distortions is limited from below by the step size and 
from above – by the computational grid size. The second 
program recalculates the scales larger than the 
computational grid size into classic aberrations, which are 
assumed to be random Gaussian variables with zero mean 
and variance being equal to11  
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where n is the radial power of the corresponding polinomial, 
R is the radius of the circle, J is the Bessel function, 
Φ(κ) = 0.489 r

0
–5/3κ–11/3 is the spatial spectrum of phase 

distortions, and r
0
 is Fried's radius of coherence. The upper 

limit of integration over κ is taken to be 2π/G, where G is 
the size of the computational grid.  

Random aberrations prescribed in such a way were 
added to phase distortions generated within the 
computational grid by the method of the Fourier transform. 
The essence of this method consists in calculation of the 
discrete Fourier transform of a random realization of the 
discrete analogue of spectral amplitude F(κx, κy) obeying 

the relation <⏐F(κx, κy)⏐
2> = Φ(κx, κy). This condition does 

not yield an unambiguous definition of the statistics of the 
complex field F, and for this reason a certain uncertainty 
retains in the possible way of generating the ensemble F. We 
solve this problem in the following way: we assume the value 
⏐F⏐ to be deterministic, so that ⏐F⏐ = Φ1/2 and arg F is a 
random value uniformly distributed on the interval [–π, π]. In 
addition, we impose a condition F(–κx, κy) = F*(κx, κy) 

which ensures the two–dimensional discrete Fourier 
transform of the field F to be real. This technique was 
tested in the following way: the constant and  
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the linear components (tilt) were eliminated from the 
circle of the diameter D, then the variance of the phase 
was calculated within this circle. The variance was 
averaged over the ensemble of realizations and compared 
with its theoretical value Δ

3
 = 0.134 (D/r

0
)5/3 (see 

Ref. 11). This test demonstrated a good agreement 
between analytic and the calculated values of Δ

3
.  

Thus our method of modeling the turbulent 
distortions has the following advantages over the well–
known methods: first, the radius of atmospheric coherence 
r
0
 is an input but not estimated parameter of the 

problem, in contrast, for example, to Ref. 10; second, the 
method makes it possible to account for the scales larger 
than the size of computational grid; and third, the 
random spectral amplitude of distortions is generated in 
such a way that the phase distortions appear to be real 
(otherwise, the energy of their spectrum is divided 
between real and imaginary parts of the output array).  

In our paper we present the results obtained by 
means of a statistical averaging of the image. Further we 
plan to model the dynamic process of phase correlation. 
Now a program has been constructed which generates 
random realizations of the aberration coefficients al (t) as 

functions of time. This program can be used not only for 
modeling the dynamics of the phase distortions generated 
by the motion of turbulent inhomogeneities whose size is 
larger than the size of the computational grid but also for 
studying the dynamic characteristics of the atmospheric 
phase distortions and of the residual phase distortions in 
the adaptive system. The following parameters were 
prescribed as input: inner and outer scales of turbulence, 

the Fried radius of coherence, the angle υ
∧
 between the 

wind direction and the OX axis, the wind velocity υ, and 
the radial power n and the azimuthal frequency m of 
Zernike polinomials describing aberrations we are 
interested in. In the first part of the program we 
calculated the correlation function of the corresponding 
aberration coefficient:3  
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The sign plus here corresponds to the cosine polinomial, 
the sign minus – to the sine polinomial, and δ is 
Kronecker's delta symbol. In second part of the program 
we calculated the spectrum of the aberration coefficient 

 

W(f) = 2 ⌡⌠
0

∞

 dτ B(τ) cos2πfτ .  

 
The spectrum W(f) may be calculated in two different 
ways: either by calculating the integral over κ after it has 
been analytically calculated over τ, or by the cosine  

transform of the discrete representation of the correlation 
function B(τ). The random realization al (t) was generated 

by the method analogous to that which was used to obtain 
the random realizations of the phase distortions. 

 
RESULTS OF CALCULATION OF THE POINT 

SPREAD FUNCTION (PSF) 
 
We now proceed to the discussion of the calculated 

results. Averaging the random realizations of the PSF 
over the ensemble, we obtained the long–exposed 
distribution of the intensity I(γx, γy) in the image plane. 

Then the fraction of energy within the circle of the radius 
ω (the value of ω in Figs. 1, 2, and 3 is given in seconds 
of arc) 

 

E(ω) = 

γx
2
 + γy

2

 

<

 

ω
2

⌡⌠ ⌡⌠  I(γx, γy) dγxdγy / ⌡⌠ ⌡⌠ I(γx, γy) dγxdγy. 

 
was calculated. Recall that calculations were made for the 
telescope of the diameter D equal to 1 m with the radius 
of coherence r

0
 being equal to 10 and 20 cm. Each figure 

shows the dependences corresponding to the diffraction 
(dashed curve) and uncorrected (dot–dash curve) cases. 
The following calculations were run for the modal 
corrector: 1) correction of total tilt; 2) correction of total 
tilt, defocusing, and astigmatism; and, 3) correction of 
total tilt, defocusing, astigmatism, and coma. The 
calculations were performed for the segmented corrector 
with 7, 19, and 37 elements, and total tilt was 
preliminarily eliminated from the aperture of the input 
pupil. Each segment had one, two or three degrees of 
freedom corresponding to compensation for either the 
constant component or the local tilts or both of them 
within each individual segment. We do not show the 
graphs corresponding to the regime of compensation for 
local tilts in the figures, because such a compensation did 
not result in any noticeable increase in E(α) in 
comparison with the regime of compensation for total tilt 
over the entire aperture. It can be seen from the figures 
that the correction of the local average phase with the 
segmented mirror provides manifold increase in the 
fraction of energy within the circle of the diffraction size 
λ/D g 0.1′′ while in the case in which the local average 
phase and tilts were corrected with the segmented mirror 
the energy distribution E(ω) approached the diffraction 
one with the number of segments either 19 or 37. The 
correction of aberrations from tilt to coma, inclusively, 
also provides the satisfactory result for r

0
 = 20 cm and 

D/r
0
 = 5. However, the effectiveness of such a correction 

rapidly decreases when the optical strength of the 
atmospheric turbulence increases up to r

0
 = 10 cm. The 

lowest curves in all figures correspond to the image 
formed without phase correction. It can be seen that the 
radius of the circle, in which 80 % of energy is 
concentrated, is 0.55′′ for r

0
 = 20 cm, and is 1.1′′ for 

r
0
 = 10 cm. This agrees quite well with the well–known 

data of astronomical observations. 
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FIG. 1. Energy distribution of the distorted PSF after compensating for: 1) tilt; 2) tilt, defocusing, and astigmatism; 
and, 3) tilt, defocusing, astigmatism, and coma. Dashed curve shows the diffraction dependence and dot–dash curves 
correspond to the distortions introduced by the atmospheric turbulence: a) r

0
 = 20 cm; b) r

0
 = 10 cm. 

 

 
 

FIG. 2. Energy distribution of the distorted PSF after compensating for average phase with the segments of the 7–, 19–, 
and 37–element mirrors (curves 1, 2, and 3, respectively); dashed curve shows diffractional dependence and dot–dash 
curve corresponds to the distortions introduced by the atmospheric turbulence: a) r

0
 = 20 cm and b) r

0
 = 10 cm. 

 

 
 

FIG. 3. Energy distribution of the distorted PSF after compensating for the average phase and local tilts with the 
segments of the 7–, 19–, and 37–element mirrors: a) r

0
 = 20 cm and b) r

0
 = 10 cm. Dashed curve shows the diffraction 

dependence and dot–dash curve corresponds to the distortions introduced by the atmospheric turbulence. 
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