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Following the analogy between the evolution of density in a heated gas of 
noninteracting particles and the diffraction of monochromatic optical waves upon their 
passage through a random–phase screen, an expression is developed to describe the 
correlation function of intensity fluctuations behind such a screen.  

Applicability limits are found for that approach. The adequacy of the model is 
tested using the example of a dynamic phase screen.  

 
The evolution of gas consisting of noninteracting 

particles, its density being ρ0 at the initial time moment 

t = 0, is described by the Liouville equation1 for density f 
in the phase space (x, υ): 
 

∂f
∂t + υ 

∂f
∂x = 0,    f(x, υ, t = 0) = ρ0f0(x, υ) . (1) 

 

The density of the gas at the point x is expressed in terms 
of the solution of Eq. (1)  

 

ρ(x, t) = ⌡⌠
–∞

∞

f(x, υ, t) dυ = r0⌡⌠
–∞

∞

f(x, – υt, υ,) dυ . 

 

Within the hydrodynamic approximation this solution 
yields infinite mean square density and variance of density 
of the particle flux in the vicinities of caustics. In a real gas 
the field of density is limited due to thermal variability of 
particle velocities. To account for this variability we 
prescribe the initial density in the phase space in the form 
fT(υ – υ0(x)) where the initial field of velocities υ0(x) is a 

random function with known1 statisitcal properties. In this 
case the density of such a gas is given by the formula  

 

ρT(x, t) = ⌡⌠
–∞

∞

fT(c) ρ(x – ct, t) dc . 

 

One can see from this relation that the thermal variability 
of velocities results in smoothing the caustic singularities in 
the densities.  

If the initial field of velocities is statistically 
homogeneous, the correlation function of density fluctuations 
can be written using the solution of Eq. (1) in the form1 

 

K
ρ

T(s, t)= 
ρ0

2

t  
⌡
⌠

–∞

∞

fT( )cT – 
c
2  fT( )cT + 

c
2  × 

 

× ωu⎝
⎛

⎠
⎞s – s0

t  – c; s0  ds0dcTdc , 

 

where ωu(u, s0) is the probability distribution of the field of 

differences between the particle velocities 
u(s0) = υ0(y + s0) – υ0(y). 

By choosing  
 

fT(c) = 
1

2πcT

 exp(–c2/2c2
T) , (2) 

 

for the Gaussian field υ0(x), with its correlation coefficient 

b0(y) and variance σ2
0, we obtain: 

 

Kq
T(y, z) = 

ρ0
2

π z
 

⌡
⌠

–∞

∞

1

1 – b0(y0) + ε
 ×  

 

× exp 
⎣
⎢
⎡

⎦
⎥
⎤

 – 
(y – y0)

2

z2(1 – b0(y0) + ε)
 dy0 . (3) 

 

Here z is the dimensionless longitudinal coordinate, 
introduced so that z = 1 within the range of focusing. In 

this case z n 1 and z . 1 are the ranges of single flux and 
multi-flux propagation, respectively. The parameter 
ε = c2

T/s20 is the gas temperature. The dependence of the 

coefficient of covariance  
 

R
ρ

T(y, z) = (K
ρ

T(y, z) – ρ0
2)/σ

ρ

2 
 

on the dimensionless transverse coordinate y at various z 
and ε values is shown in Fig. 1. As can be seen from the 
values of σ2

ρ
 shown in this figure the variance of fluctuations 

of density increases with decreasing temprature of the gas. 
 

 
 

FIG. 1. Covariance coefficient R
ρ

T(y, z). Parameters of the 

curves: 1) z = 0.1, ε = 0.1, σ
ρ

2 = 0.07388,  

2) z = 0.1, ε = 1, σ
ρ

2 = 0.06119, 3) z = 1, ε = 0.1,  

σ
ρ

2= 0.28388, 4) z = 1, ε = 1, σ
ρ

2 = 0.0444, 5) z = 10, ε = 0.1,  

σ
ρ

2 = 0.02398, and 6) z = 10, ε = 1, σ
ρ

2 = 0.00279 
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An invariant follows from Eq. (3) (see Ref. 1)  
 

⌡⌠
–∞

∞

[K
ρ

T(y, z) – ρ0
2] dy = 0 , 

 

which denotes that condensing of the medium (ρ > ρ0) is 

accompanied by its rarefaction in the adjacent ranges 
(ρ < ρ0). 

The suggested approach appears to be particularly 
convenient for solving the problem of wave propagation 
behind the phase screen. It is well known2 that the 
traditional way of solving this problem meets with 
difficulties since the resulting integrals are hard to compute. 
At the same time the analogy1 between the evolution of 
density of a heated gas of noninteracting particles, and the 
diffraction of monochromatic optical waves, passed through 
a random phase screen, shows a way of relatively easy 
arriving at statistical characteristics of the wave benind 
such a screen. The screen introduces phase distortions kψ(x) 
into the propagating wave. To find the analogy we are 
searching for, one has to proceed from the equation of 
quasioptics for the complex amplitude E(x, t) to the 
equation for the function  

 

f(x, υ, t) = 
1
2π ⌡
⌠

–∞

∞

E ( )x + 
z
2k , t  E*( )x – 

z
2k , t  × 

 

× exp (–iυz) dz , (4) 
 

which may be interpreted as the beam density of a wave, 
arriving at the point (x, t) at the angle υ with respect to the t 
axis. This function statisfies Eq. (1) with the same boundary 
condition if the initial density ρ0 is substituted by the initial 

intensity I0. 

By solving Eq. (1) for a phase screen, and neglecting 
"thermal variability" one obtains the expression analogous the 
geometric optics (GO) approximation. The optical analogue of 
thermal scatter of particle velocities is the phenomenon of 
diffraction smoothing of caustic singularities in the wave field. 
To account for the diffraction the initial angle of the beam 
arrival υ0(x) = ψ′(x) is assumed to be a random function with 

known statistical properties, the initial beam density being 

equal to fT(υ – υ0(x)).  
To construct the optical analogue of the phase density let 

us isolate two parts in the phase factor (4), one of them 
determining the GO–propagation, and the other one being 
responsible for the diffraction blooming. Semi–qualitative 
account for the effect of diffraction, wich limits fluctuations of 
the intensity, allows one to obtain the boundary condition  

 

fT(x, υ) = 
1
2π ⌡⌠

–∞

∞

g(z, k) exp [ –i(υ – υ0(x)) z] dz , 

 

where the random diffraction factor is substituted by its 
average value  

 

g(z, k) = <exp 

⎩
⎨
⎧

⎭
⎬
⎫

ik ⌡⌠
x–z/2k

x+z/2k

[υ0(y) – υ0(x)] dy > . 

If we have a statistically homogeneous Gaussian field 
υ0(x) the beam density fT(c) has the form (2), so that Eq. (3) 

holds for the corelation function of intensity fluctuations, 
provided that ρ0 is substituted by I0. The parameter ε now 

determines the ratio of the width of the diffraction blooming 
to the rams initial angle of the beam arrival. The lower is ε, 
more accurate is the GO–approximation.  

Let us now find the applicability limits of the model of a 
heated beam from the condition that thermal blooming does 
not leads to overlapping of the beam tubes: 

 

cT n σ0/N . (5) 
 

The value in the right side of inequality (5) is the scale of a 
single beam tube, when the total number of such tubes is N. 
Assuming the size of the spatial inhomogeneity to be l0, we 

obtain N0 ∼ σ0t/l0 (see Ref. 1), while it follows from the 

definition of the diffractional scale that cT ∼ (σ0/(kl0)
2)1/3. 

Substitution of this value into Eq. (5) yields:  
 

z n ε–1/2 . (6) 
 

Adequacy of the proposed model was tested using the 
dynamic sine phase screen. This screen transforms the wave 
phase as follows:  

 

kψ(x) = kψ0sin(kx + ϕ0) , 
 

where the constant initial phase shift ϕ0 is homogeneously 

distributed over the range [ –π, π]. Expanding the phase 
into a series and taking only its first term, which describes 
the diffraction blooming, and averaging over ϕ0 we find the 

intensity within the proposed model of heated beam as  
 

IT(y, z) = 
1

πε z
 ⌡
⌠

–∞

∞

exp 
⎩
⎨
⎧

⎭
⎬
⎫

 – 
1
ε⎣
⎡

⎦
⎤y0

z  – cos(y – y0)  
2

 dy0 , 

 

and also we obtain the exact GO–solution:  
 

IGO(y, z) = 
1
z ∑

i

1
⏐sin(y – y0 i) – 1/z⏐ , 

 

where the summation is conducted over all roots of the 
equation  

 
cos(y – y0) – y0/z = 0 . 
 

On the other hand, our model of the screen makes it 
possible to find the exact solution of the equation of 
quasioptics (QO)  

 

IQO(y, z) = ⏐ – iJ0(α) – i∑
n=1

∞

exp(– in2z/2α) ×  

 

×Jn(α)[exp(iny) + (–1)n exp(–iny)] 2,   α = (3x*)–1/2ε–3/4 , 

 
where x* is the first zero of the Bessel function J0. 
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FIG. 2. Average wave intensity behind the dynamic sine phase screen: a) z = 0.1, I
GO (1) and IT (2) at 

ε = 0.1; b) z = 1, IGO (1) and IT (2) at ε = 0.1; and c) z = 10, IGO (1), IT (2), and IQO (3) at ε = 0.1.  

 
It can be seen from Fig. 2. in which the function I(y) is 

shown as a function of the parameter z, that in the case of 
single beam propagation the solution obtained within the 
model of heated beams completely coincides with the GO–
solution, provided that ε is not too large. In the range of 
focusing the diffraction smoothing of caustic singularities is 
adequately accounted for, what can easily be seen from the 
comparison of IT with IQO, while outside the caustics the 

solution agrees with IGO. However within the range of multi-

beam propagation (z . 1) our model fails, as it follows from 
condition (6), since it yields a constant solution (with  

exception for the case of ε → 0, in which it transforms into the 
GO–solution), while the exact solution in this range is a 
statistically homogeneous random Gaussian field.2 
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