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Expressions are developed within the three–dimensional model of the 

inhomogeneous atmosphere to calculate both the vertical and the lateral astronomic 
refraction. These describe refraction anomalies as functions of the zenith and azimuth 
angles, as well as the atmospheric parameters at the observation point. 

 

Studies of refraction of electromagnetic waves in the 
atmosphere are highly important for increasing the accuracy 
of measuring linear angles in both the microwave and 
optical ranges.1–3 

Many techniques have been suggested to estimate the 
refraction corrections. The largest group among them is that 
of techniques based on the approximate physical models of 
refraction, which yield comparatively simple mathematical 
expressions for computing such corrections. They use data 
on the problem geometry, on the parameters of the standard 
atmosphere, and on the values of meteorological parameters 
measured at the observation point.1–5 

Another group of techniques consists of those based on 
the so–called reduction formulas. When developing them 
statistical techniques are employed to select empirical 
relations, which approximate the results of numerical 
simulations. In this approach the salient features of the 
physical models are not decisive; the principal criterion for 
the quality of reduction formulas is the agreement between 
the computational results yielded by those formulas and 
those from numerical simulations (see, e.g., Ref. 4). 

An important place is also occupied by techniques of 
numerical retrieval of refraction corrections from data of 
radiosounding. These techniques make it possible to 
account, in most complete and concise manner, for the 
actual atmospheric parameter profiles along the sensing 
path. They are developed both for one–dimensional5,6

 and 
three–dimensional7,8 models of the atmosphere. 

Despite the long history of such studies and the 
numerous thechniques, certain problems of estimating 
optical refraction from angular observations have not yet 
found their adequate solution. In particular, some specific 
features in the anomalies of vertical refraction actually 
observed during experiments and depending on both the 
azimuth and zenith angles of the tracked target, are still 
discussed in publications, together with those of the 
particular behavior of the vertical, horizontal, and lateral 
refraction at large zenith angles, etc. 

Reduction formulas cannot serve the purpose of 
analysis of such questions, since these are constructed for a 
one–dimensional atmospheric model. Numerical techniques 
do not fit this purpose either, the three–dimensional models 
of inhomogeneous profiles included,7,8 because the final 
result of such calculations appears to be dependent on 
numerous parameters, so that the actual cause of this or 
that effect can hardly be isolated. 

Within a wide range of azimuth and zenith angles the 
approach most feasible to study physical causes of the actual 
behavior of both the vertical and lateral refraction is the 
development of models containing only few parameters, 
which, on the one hand, account for the three–dimensional 
inhomogeneity of the atmosphere, and on the other, admit  

analytical expressions, illustrating explicitly the studied 
dependences. This approach is typical, for example, for 
studies described in Refs. 2 and 9. 

In contrast to those studies which included some a 
priori set analytic profile of air refractivity (which is 
usually assumed exponential) we attempted to construct a 
theory, which would hold for an arbitrary three–
dimensionally inhomogeneous–spatial distribution of air 
refractivity. 

This theory is based on the integral description of the 
ray equations of geometric optics, formulated in Refs. 10 
and 11. According to Ref. 11 the angles at which the beams 
arrive at final points of the trajectory are related (the effect 
of beam twisting being neglected) by the expression 
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0
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where n
0
, nL, ∇n

0
, ∇nL are the values of air refractivity and 

of its gradient, respectively, at the observation point and at 
the observed target; l

0
, lL are the directions along which the 

beam arrives at these points (tangents to the trajectory); L 
is the trajectory length. 

Limiting our treatment by astronomic refraction, i.e., 
assuming nL= 1, ∇nL= 0, lL= rL (where rL is the true 

direction toward the observed target), we reduce the vector 
equation (1) to the form 
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0
l
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To simplify our calculations we introduce a Cartesian 
system of coordinates aiming its z axis to the zenith, its x 
axis to the south and its y axis to the east (their respective 
orths are kz, kx, ky) and present Eq. (2) in the form 
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where z
t
 and z

a
 are the true and apparent zenith angles; A

t
 

and A
a
 are the true and apparent azimuths; g

v
, g

h
, and g

l
 

are the vertical, horizontal, and lateral projections of the 
gradient of air refractivity at the observation point, 
respectively. 

By multiplying Eq. (3) successively by k
z, kx, and ky 

(that is making a scalar operation) we obtain a system of 
three equations which, after the value L excluded from it, 
yields the following two equations: 
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Equations (4) can be interpreted as a system of 
equations for retrieving the angles of the vertical and lateral 
refraction (α and α

l
, respectively), which are related to z

t
, 

z
a
 and A

t
, A

a
 as follows: 

 

z
t
 = z

a
 + α,  A

a
 = A

t
 + α

l
 . (5) 

 

This retrieval is based on the use of the apparent zenith z
a
 

and azimuth A
a
 angles, the refractive index n

0
, and the 

projections of the refractivity gradient g
v
, g

h
, and g

l
 

measured at the observation point. 
From condition z

t
 = z

a
 and A

t
 = A

a
 and using the 

system of equations (4) we find the angles z
a0

 and A
a0

, at 

which the refraction is absent, i.e., α = α
l
 = 0, 
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The absence of refraction in this case is explained by the 
coincidence of the direction along which the beam arrives 
with that of the gradient of refractivity, and as well known 
the beam curvature is equal to zero in this case.12 

Thus, when there are horizontal gradients in the 
refractivity, zero vertical refraction take place at the angles 
z
a0

 and A
a0

 described by formula (6), and do not at z
a
 = 0. 

The numerical estimate of the angle z
a0

 can easily be 

obtained, e.g., for the values g
h
, g

v
 related to the tilt of the 

layers with equal refractivity. According to Refs. 8 and 13 
such tilts can reach 100′′. 

If one assumes that such a layer is tilted to the north, we 

have g
h
/g

v
 g 100.5.10–6 g 5.10–4 and g

h
/g

v
 g 0. Then 

z
a0

 g arctan (5.10–4) g 5.10–4, i.e., the angle of zero vertical 

refraction can be displaced by 100′′ from the direction to the 
zenith when such a horizontal gradient is present. 

General solution of system (4) with the account for 
Eqs. (5) can be presented in the form 
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where  
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It is easy to check that in the limiting case in which 
g

h
 = g

l
 = 0 (a one–dimensional profile) the general solution 

of Eq. (7)–(10) is reduced to the form 
 

α
l
 = 0 , α = arcccos n2

0
 cos2z

a
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0
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a
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By expanding α in a power series (n0 – 1) and taking only the 

first term different from zero into account, one obtains the 
well–known expression from the Laplace–Oriani theorem2,4 

 

α = (n
0
 – 1) tan z

a
 . (13) 

 

It is evident from the formal mathematical point of 
view that formula (13) is valid, only for those angles at 
which the expression under the root sign in Eq. (12) is 
non–negative 
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from this condition we have 
 

z
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 ≤ arccos 

n
0
2 – 1

n
0
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Note that despite quite a large value of z
a

lim (the limit 

angle defined by the criterion (15) z
a
lim g 88°) theorem (13) 

practically guarantees a satisfactory accuracy only within 
z
a
 < 70° (see Refs. 1–5). 

However, even within this range, the Laplace––Oriani 
theorem fails to be adequate for accounting for the 
refraction effects. In particular, it does not describe the 
effect of the shift of the point of zero refraction, which is 
predicted by formulas (6). 

Taking the horizontal components of refractivity 
gradients in the general solution of Eqs. (7)–(11) into 
account one can significantly improve the level of adequacy 
of the refraction model and broaden the range of angles 
z ≤ z

a
lim. In the case of z

a
 = 0 and A

a
 = 0 the asymptotics of 

the general solution takes the form 
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The negative values of refraction at zero observation angles 
result from the fact that according to Eq. (6) the point of 
zero refraction is shifted from the direction to the zenith 
determined by the angles z

a0
 and A

a0
. 

At moderate values of the angles z
a
 the value α can be 

expanded in a power series (n0 – 1) limited to the first 

term different from zero 
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It can be seen that in the absence of horizontal gradients 
(g

h
 = gs = 0) expression (13) of the Laplace – Oriani 

theorem follows from relation (18). 
Formula (18) makes it possible to derive a generalized 

expression covering the well–known descriptions of the 
refraction anomalies,11,13 which follow from relation (18) at 
g

l
 = 0 (on subtracting the value (n

0
 – 1) tan z

a
). In 

contrast to expressions derived in Refs. 11 and 13, formula 
(18), as well as general formulas (7)–(11), make it possible  
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to present the anomaly of refraction as a function of the 
horizontal g

h
 and lateral g

l
 gradients of the refractivity, and 

the apparent azimuth A
a
 and zenith z

a
 angles. In particular, 

the expression for the horizontal α
a
 anomaly in refraction 

following from formula (18), has the form 
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A similar relation can be obtained for the lateral refraction 
(the azimuth correction) 
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Thus, formulas (19) and (20) generalize the well–known 
expressions11,13 for refraction anomalies, expanding them to 
cover the case when the lateral gradient of the refraction is 
different from zero (g

l
 ≠ 0). These formulas are applicable to 

the case of angles far from the limit z
a
 → 0 and z

a
 = π/2. 

(One can see from Eq. (13) that as z
a
 → 0 the value α

l
 should 

not depend on (n
0
 – 1) at all.) For the directions close to the 

horizon one should use general Eqs. (7) and (8). 
The fact should also be kept in mind that the presence of 

square root in formula (9) imposes a limitation on the angles 
z
a
 in the vicinity of z

a
 g π/2 (similar to the case of the 

Laplace–Oriani theorem). The condition according to which 
the expression under the root sign should remain non–negative 
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results in the following limiting value of the angle z
a
lim, at 

which formulas (7)–(9) are yet valid: 
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When g
h
 = g

l
 = 0 formula (22) agrees with 

inequality (15). The analysis shows that with growing g
h
 and 

g
l
 the range of angles at which formulas (7)–(11) are valid 

increases (it becomes wider than the applicability range for the 
Laplace–Oriani theorem). 

However, more definite conclusions on the accuracy and 
applicability limits of expressions developed in the present 
study can be formulated only after comparing the calculational 
results with reliable experimental data and with computational 
results obtained using alternative technique (such as that in 
Refs. 7, 8, and 14), which accounts accurately for the three–
dimensional inhomogeneity of the atmosphere. Such 
comparisons should made carefully as concerning the adequate 
account for the azimuth dependence of angles of refraction. 

 
REFERENCES 

 
1. A.V. Alekseev, M.V. Kabanov, and I.F. Kushtin, 
Optical Refraction in the Earth Atmosphere (Horizontal 
Paths (Nauka, Novosibirsk, 1982), 160 pp. 
2. M.A. Kolosov and A.V. Shabel'nikov, Refraction of 
Electromagnetic Waves in the Atmosphere of Earth, 
Venus, and Mars, (Sov. Radio, Moscow, 1976), 220 pp. 
3. A.L. Ostrovskii, B.M. Dzhuman, F.D. Zablotskii, and 
N.I. Kravtsov, The Account for Atmospheric Effects in 
Geodesic Measurements (Nedra, Moscow, 1990), 235 pp. 
4. A.V. Alekseev, M.V. Kabanov, I.F. Kushtin, and 
N.F. Nelyubin, Optical Refraction in the Terrestrial 
Atmosphere (Slant Paths) (Nauka, Novosibirsk, 1983) 
230 pp. 
5. I.F. Kushtin, Refraction of Light Beams in the 
Atmosphere (Nedra, Moscow, 1971), 128 pp. 
6. K. Kurzynska, Astron. Nachr. 308, No. 5, 323–328 
(1987). 
7. L.S. Yunoshev, Lateral Refraction of Light in Angular 
Measurements (Nedra, Moscow, 1969), 96 pp. 
8. A.Yu. Yatsenko, Theory of Refraction (Kazan Univ., 
Kazan, 1990), 130 pp. 
9. A.V. Shabel'nikov, in: Abstracts of Reports at the All–
Union Conference on Refraction of Electromagnetic 
Waves of the Atmosphere, Tomsk Affiliate, Siberian Branch 
of hte Academy of Sciences of the USSR, Tomsk, (1983), 
pp 108–118 . 
10. A.V. Prokopov, Pis'ma Zh. Tekh. Fiz. [Sov. Tech. 
Phys. Lett.] 14, No. 2, 107–110 (1988). 
11. A.V. Prokopov, Ye.V. Remaev, and A.V. Brazhnichenko, 
Atm. Opt. 2, No. 12, 1076–1080 (1989). 
12. Yu.A. Kravtsov and Yu.I. Orlov, Geometric Optics of 
Inhomogeneous Media (Nauka, Moscow, 1980), 304 pp. 
13. A.I. Nefed'eva, Izv. Astron. Engelgardt Observ., 
No. 53, 59–74 (1988). 
14. L.S. Yunoshev, Studies in Time and Frequency 
Measurements, (All–Union Scientific–Research Institute of 
Physicotechnical and Radio Engineering Measurements, 
Mendeleevo, Moscow Province, 1989). 
 

 


