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This paper deals with study of optical power of a lidar return from a surface in 

the atmosphere with a complicated scattering phase function. Expressions that describe 
the received power from a surface with a scattering phase function having the diffuse 
and quasispecular components are derived for the case in which sensing is conducted 
through an optically dense aerosol atmosphere. It is shown that the received power 
essentially depends on the ratio of the diffuse and quasispecular components of the 
surface scattering phase function. 

 
Energy characteristics of lidar returns recorded 

through the atmosphere, from a surface having either 
specular or a Lambertian scattering phase function have 
been studied in a number of papers (see, e.g., Refs. 1–4). 
Below we consider the power of a lidar return received 
through the atmospheric layer from a surface with a 
complicated scattering phase function.  

Let the sensed surface possess the scattering phase 
function having the diffuse and the quasispecular component 
with a narrow reflection phase function, the maximum of 
which coincides with the direction of specular reflection. 
The brightness I(R, m) of radiation reflected from such a 
surface is 
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where R is the spatial coordinate; m is the unit vector 
describing the direction of observations; I(R) is some function 
of coordinates; α and β are coefficients determining the 
fractions of the diffuse and quasispecular reflections; m

⊥
 and 

m
0⊥

 are the vectors characterizing the direction of observations 

and that of the maximum of the reflected radiation (for the 
quasispecular component of the reflectivity);  
m
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 = {mx, my}; m0⊥

 = {mx0
, my0

}; mx = sinθcosϕ; my = sinθsinϕ; 

my0
 = sinθ

0
sinϕ

0
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 = sinθ
0
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0
; (θ, θ

0
) and (ϕ, ϕ

0
) are the 

zenith angles and the azimuths of an observation and of the 
maximum quasispecular reflection. Angles θ

0
 and ϕ

0
 are 

interrelated according to the laws of geometric optics to 
corresponding angles θs and ϕs, which describe the direction of 

sounding radiation incidence; Δ is the parameter characterizing 
the angular width of the quasispecular component of the 
scattering phase function; and, n is the parameter 
characterizing the angular width of the diffuse component of 
the scattering phase function. For Δ n 1 formula (1) takes the 
form  
 

I(R, m) g I(R)
⎣
⎡α cosnθ

 

+
 

 

 

+

 

⎦
⎤

β exp
⎩
⎨
⎧

⎭
⎬
⎫

– 
(ϕ – ϕ

0
)2cos2θ

0
 + (ϕ – ϕ

0
)2sin2θ

0

Δ2  . (2) 

 

Let us normalize Eq. (2). The integral of I(R, m) cosθ 
over the half–space (i.e., over the solid angle of 2π into 
which the radiation is reflected) should be equal to the 
irradiance of the "secondary" source E at the surface2 
(E(R) = AEs(R)); Es(R) is the irradiance of the surface 

produced by sounding radiation incident upon it; A is the 
reflectance).  

For E(R) we obtain 
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Thus, with normalization taken into account radiation 
brightness (2) is  
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According to Ref. 3 the reflection phase function of 

the surface, corresponding to brightness (4) is equal to  
 

ρ(θ, ϕ) = 
I
H
(R, m)

I
0
(R, m) = 

1

α 
2

n + 2 + βΔ2⎣
⎢
⎡
αcosnθ

 

+

 

 

 

+

 

⎦
⎥
⎤

β exp

⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫

–

 

(θ – θ
0
)2cos2θ

0
 + (ϕ – ϕ

0
)2sin2θ

0

Δ2  , (5) 

 

where I
0
(R, m) is the brightness of the Lambertian surface.  

When β = 0 and n = 0 formulas (1)–(5) are transformed 
into corresponding expressions for a Lambertian surface. At 
α = 0 and as Δ → 0, Eqs (1)–(5) are transformed into the 
formula for a specularly reflecting surface.  

We assume that the scattering surface is characterized 
by brightness (4). From the distribution of brightness over 
the scattering surface In(R, m) one can find the brightness  
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of the radiation I(R~,m~) incident upon the receiver,5 and 
then, applying the reciprocity theorem to the scattering 
medium5 and using the results from Ref. 3, construct an 
integral expression for the power of radiation collected by a 
receiver (we assume mutual shadowing of the surface 
elements to be negligible) 
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where Id(R, m) is the brightness at a point R of the surface 

S, produced by radiation incident upon it through the 
atmosphere from a "fictious" source with parameters of the 
receiver; θd is the angle between the normal to the surface 

and the direction to the receiver.  
Further calculations are conducted for a 

homogeneously scattering atmosphere with a strongly–
forward–peaked scattering phase function. We assume that 
the angle at which the receiving aperture is seen from the 
points at the scattering surface is much less than the 
angular width of the phase function for radiation reflected 
from that surface and the receiver field of view. This 
condition significantly simplifies calculating the integral in 
Eq. (6). It means physically that we neglect variations of 
the reflection phase function for those points of the surface, 
from which the radiation enters the receiver. Within the 
approximation of small angles for the polar diagrams of 
both the transmitter and receiver, assuming that the optical 
axes of the receiver and transmitter are in the XOZ plane, 
and using the results from Refs. 3, 6, and 7, one obtains the 
equation for power of radiation collected by the receiver in 
the following form: 
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R′ = {Rxcosθs, Ry} ; R′′ = {Rxcosθd, Ry} ; 

 
Es(R), Ed(R) are the irradiances of the surface produced by 

the actual and the "fictious" sources, respectively (the latter 
having the parameters of the receiver) (see Refs. 3 and 6) ;  

Ls and Ld are the distances from source and the receiver to 

the surface, respectively; 2αs, 2αd are the divergence angles of 

the source and the receiver field of view, respectively; σ is the 
scattering coefficient of the atmosphere; <γ2> is the variance of 
the angle of incident radiation deflection during an elementary 
act of scattering.  

When β = 0, n = 0, Eq. (7) is transformed into that for 
the power received from the Lambertian surface, and at α = 0 
as Δ → 0 it transforms into the expression for a power received 
from a specularly reflecting surface.  

By calculating the integrals entering into Eq. (7) we 
obtained  
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P
0
 is the power emitted by the source; rd is the effective 

size of the receiving aperture; ε is the atmospheric 
extinction coefficient. 

At β = 0, n = 0, and σ = 0 Eq. (8) is transformed into 
the expressions for power received from a flat Lambertian 
surface through a transparent aerosol atmosphere,3 and at 
α = 0 as Δ → 0 it transforms into the expression for power 
received from a flat specularly reflecting surface.  

Figure 1 shows the dependence of N (which is the 
ratio of the power P to power P(β = 0, n = 0), calculated 
for a Lambertian surface), on the parameter β/α. The 
calculations were made using Eq. (8) and the following 
values of the parameters: n = 0 (Lambertian surface);  
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FIG. 1. Received power vs. the ratio of diffuse to the 
quasispecular component of the surface scattering phase 
function.  
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It can be seen from the figure that the received 
power strongly depends on the ratio of the quasispecular 
component of the scattering phase function to the diffuse. 
The more transparent is the atmosphere, the stronger is 
this dependence.  

The equations derived in this paper can be useful for 
development of lidar systems and for analysis of their 
operation. 
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