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Two suboptimal estimates of the concentrations of the atmospheric constituents 
applicable for processing the data obtained using the elastic and Raman scattering 
lidars as well as the resonance fluorescence lidar are synthesized based on the 
measurement of laser pulse energies during every sensing step. Two formulas are 
derived for the errors in these estimates. The advantage of one estimate over another 
and over the conventionally used intuitive estimate is demonstrated by way of 
example.  

 
The lidars based on the effects of elastic scattering 

(ES) and Raman scattering (RS) as well as on the resonance 
fluorescence (RF) are capable of measuring the 
concentrations of the aerosol component ES and different 
gaseous components (RF and RS) in the atmosphere.1 The 
accuracy of measuring the concentration depends strongly 
on the estimate employed. The intuitive estimates, whose 
errors may significantly exceed the errors of optimal 
estimates, are most often used. At the same time, transfer 
from the intuitive estimates to the optimal or suboptimal 
estimates often requires only an insignificant change in the 
algorithm for processing the lidar signals or simple 
modification of the lidars. 

The error in measuring the concentration is caused by 

a stochastic nature of the lidar–atmosphere system and, 

correspondingly, by different kinds of fluctuations.2 When 
synthesizing the estimates of concentration we will take into 
account only the shot electric flux fluctuations of the 
photodetector, and when analyzing these estimates, in 
addition, the fluctuations of the atmospheric transmission 
and the laser pulse energies. Let us consider the lidars, in 
which the laser pulse energies are measured during every 
sensing step by taking off a small portion of the emitted 
flux. Each of these lidars has one informational frequency 
channel operating in the photon counting mode. Since 
optimal estimate against the criterion of minimum variance 
is too complicated for such lidars, let us synthesize two 
simple suboptimal estimates, which would account for the 
measured energies, and compare their errors with the error 
of the conventionally used intuitive estimate disregarding 
the energies measured during every sensing step. 

Let n
µ
 be the number of single–electron pulses (SEP) 

recorded by the detector during the strobing time t, which 
corresponds to the spatial strobe L = ct/2, during the μth 

sensing step of the series of N (μ = 1, N ) observations. The 

quantity n
µ
, which obeys a Poisson distribution2 comprises 

lidar signal and noise (background noise, dark current, etc.). 
The average quantity n

µ
 is given by the lidar equation1 and, 

for all lidars being analyzed (the ES, RS, and RF lidars), may 

be represented in the form n
_

µ
 = KTMI

µ 
+ m, where K is the 

instrumental parameter, T is the atmospheric transmission 
along the propagation path to the strobe L being sensed, and  

backwards, M is the estimated concentration averaged over L 
and over N observations, I

µ
 is the laser pulse energy, and m is 

the average number of the SEP of noise. In this case the 
suboptimal estimates, based on different approaches to the 
estimate of maximum likelihood, have the forms 

 

M
∧

 = 
1

KT 

1
N∑nμ – m

1
N∑Iμ

 , (1) 

 

M
∧

 = 
1

KT 
1
N∑

nμ – m

Iμ
 , (2) 

 

where the symbol Σ indicates summing over μ from 1 to N. 
Note that estimate (1) is based on normalization of the 
sampling averaged over the series of observations to the 
energy averaged over the series of observations while 
estimate (2), which is more widespread than estimate (1), is 
based on normalization for one sensing step. If the energy is 
not measured during each sensing step but is taken identical 
for all sensing step and equal to I, then the optimal 
estimate has the form 
 

M
∧

 = 
1

KT 

1
N∑nμ – m

I  (3) 

 

and coincides with the conventionally used intuitive 
estimate,3 which is based on the sampling mean. 

In calculating M
∧

, instead of the unknown quantities 
K, T, and m, which are implemented during sensing, we 

may use their estimates K
∧

, T
∧
, and m

∧
, which can be 

determined for K by means of preliminary calibration of the 
lidar, for m based on additional sampling of the SEP 
numbers during time tm between the sensing steps or during 

time t in the auxiliary "noise" channel,3 and for T by 
additional sampling the SEP numbers from the "reference" 
altitude (ES and RF lidars) or in the auxiliary "nitrogen" 
channel (RS and ES lidars).1 In relations (1) and (2) I

µ
 is 

replaced by its estimate I
∧

µ
 obtained by direct measurement,  
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and in Eq. (3) I is replaced by its estimate , taken from the 
nominal data of the laser or obtained by preliminarily 
testing the laser.  

When analyzing M
∧

 we assume that K
∧
 = K and m

∧
 = m, 

because they can be determined with small errors with the 

help of a high–precision calibrating device and during time 

tm 
. t, while T

∧
 is unbiased with mean value T

∧
_

 = T and 

relative variance dT
2
. We will obtain the error of M

∧
 

comprising the fluctuation error δ and the statistical bias ξ 

(Ref. 2) for the models of I
∧
 and I

∧

µ
 most important in practice. 

For estimate (1) when I
∧

µ
 is well known and possesses 

the deterministic bias ξ
µI = 

(I
µ 
— I

∧

µ
)/I

∧

µ
, we have 

 

ξ g ∑ ξμI 
I
∧

μ

∑I
∧

μ

 , (4) 

 

and 
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1

N1/2

⎣
⎢
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∧
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⎝
⎜
⎛

⎠
⎟
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⎦
⎥
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Nδ
2
T (1

 
+

 

ξ)2
1/2
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 (5) 
 

and when I
∧

μ is unknown, random and has the statistical bias 

ξμI = (Iμ – I
∧
_

μ)/I
∧
_

μ and the variance δμI
2  = D(I

∧

μ)/IμI
2

∧ 
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 we have 
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∧
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 , (6) 
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⎦
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Here and below, s(x) = KTMx. In particular cases we have 
the following: when the energy is measured exactly and  

I
∧
µ 
= I

µ
 and ξ = 0, and δ can be found from Eq. (5); when  

I
∧
µ 
 is stationary and I

∧
_

µ 
≡ I

∧
_

 and δμI
2 

 ≡ δI, ξ = ∑ξμI/N and 

δ can be found from Eq. (7); when I
∧
µ 
 is unbiased and  

I
∧
µ  

= I
µ
 and ξ

µI = 0, ξ = 0 and δ can be found from Eq. (7). 

For estimate (2) when I
∧
µ
 is well known  

(ξ
µI = 

(I
µ
– I

∧
)/I

∧
), we have 
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1
N ∑ ξμI , (8) 
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and when I
∧

µ
 is unknown and random (ξ

µI = 
(Iμ – I

∧
_

μ)/I
∧
_

µ
 and  

δμI
2
 = D(I

∧
µ
)/Iμ

2
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) we have 
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Using Eqs. (8)–(11) it is easy to derive relations for ξ and δ 
of estimate (2) in the same particular cases as for estimate (1).  

For estimate (3) when I
∧
µ
 is taken from the nominal 

data of the laser and possesses the deterministic bias 

ξ
µI = (I

µ 
— I

∧
)/I

∧
, we have  
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and when I
∧
 has been obtained during the preliminary laser 

tests, similar to a sensing step, and has the statistical bias 

ξ
µI = (I

µ – I
∧
_

)/I
∧
_

 and the variance δΙ
2 = D(I

∧
)/I2

∧ 
_ 

 we have 
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When there are Np stationary steps of preliminary 

testing and I
∧
 is determined as an arithmetical mean over 

these steps, the variance of I
∧
 equals to δΙ

2/Np. For Np 
= N 

estimate (3) and its error coincide with estimate (1) and its 
error, and for Np > N the error in estimate (3) is smaller than 

that in estimate (1).  
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For each individual lidar system and specific conditions 
of sensing, based on formulas (4)–(15), one can choose the 
most efficient estimate among estimates (1)–(3). Thus, it may 
turn out that for small errors in measuring the laser pulse 
energies during the period of observations (N) and for certain 
atmospheric conditions (δT), one of estimates (1) or (2) is 

most efficient. The other estimate may be efficient during 
another period of observations and for other atmospheric 
conditions. If the errors are large, it is more reasonable to 
avoid the energy measurements during every sensing step and 
employ estimate (3). 

As an example we have calculated the values of δ for 
two models of I

µ
, i.e., for a linear model  

 

Iμ

Im
 = 

1
N – 1 μ + 

1
2 

N – 3
N – 1 , (16) 

 

and for a sinusoidal one 
 

Iμ

Im
 = 1 + 

1
2 sin( )2π

N – 1 (μ – 1)  , (17) 

 

where N ≥ 2 and Im 
= ∑ Iμ/N. We set s(Im) = m = 1, δT 

varied from 0 to 0.5, and N varied from 2 to 20. Some of 

the calculated results are given in Figs. 1–3. 
 

 
 

FIG. 1. Error in estimates (1) (curves 1, 2, and 3), (2) (1′, 
2′, and 3′), and (3) (1′′, 2′′, and 3′′) for the model, in which 

the values of I
∧
µ
 are well known: ΔI = ξ

µI = –0.2 (1, 1′, and 

1′′), 0 (2, 2′, and 2′′), and 0.2 (3, 3′, and 3′′). δT 
= 0.2. 

 

Figure 1 illustrates the errors in all three estimates (1)–
(3) for model (17) with δT being equal to 0.2, for the case of 

well–known I
∧

µ
 for estimates (1) and (2), and when I

∧
 is 

prescribed for estimate (3). Note that for this case the errors 
in estimates (1) and (3) are independent of the model I

µ
 while 

the error in estimate (2), even though it depends on the 
model, does so weakly, especially for N ≥ 5. For the exact 
energy measurements during the sensing steps (ξ

µI = 0) and 

when the energy is averaged over a series of observations, 

(ΔI = (I
∧
 – Im)/Im 

= 0), estimates (1) and (3) coincide and 

have an identical accuracy while estimate (2) is worse than 
they. The same can be seen for other values of δT. When 

measuring the energies with the errors, estimate (1) is 
virtually always higher than estimate (2), except when 
ξ
µI = 0.2 and the values of δT and N are large (for δT 

= 0.5, 

when N > 9), and sometimes it is worse than estimate (3) 
depending on the quantities ξ

µI and ΔI (for example, when  

ξ
µI = 0.2 and ΔI = 0.2). As δT increases, the magnitudes of the 

errors of all estimates monotonically increase. 
 

 
 

FIG. 2. Error in estimates (1) (curves 1, 2, and 3) and (2) 
(curves 1′, 2′, and 3′) for the model, in which the quantities 

I
∧

µ
 are random and unbiased: δT 

= 0 (1 and 1′), 0.2 (2 and 

2′), and 0.5 (3 and 3′) for ξ
µI = 0 and δI = 0.2. 

 

Figures 2 and 3 show the variant of random I
∧

µ
 described 

by model (17), and correspond to the unbiased energy 

measurements (ξ
µI = 0) with δI = D1/2(I

∧

µ
)/Im = 0.2 and to 

biased energy measurements with δ
µI = 0.2. Note that for this 

case the error in estimate (3) is independent of the model I
µ
, 

the error in estimate (1) depends weakly on it for all N, and 
the error in estimate (2) depends strongly on the model only 
for N ≤ 4. It turns out that, when the unbiased energy has 
been measured (see Fig. 2), estimate (1) is higher than 
estimate (2) for any δT when N ≤ 11 and, when we have the 

biased readings of the energy (see Fig. 3), this is the case for 
any δT, N, and ξ

µI with exception of the cases when ξ
µI = 0.2 

and δT and N are large (for δT 
= 0.5, when N > 9). In an 

important particular case in which I
∧

µ
 is stationary, 

estimate (1) is always higher in accuracy then estimates (2) 
and (3) while its error, just like the error in estimate (3), is 
independent of the model of I

µ
. 

 

 
FIG. 3. Error of estimates (1) (curves 1, 2, and 3) and (2) 
(curves 1′, 2′, and 3′) for the model, in which the quantities 

I
∧

µ
 are random and biased, ξ

µI = –0.2 (1 and 1′), 0 (2 and 

2′), and 0.2 (3 and 3′), and δ
µI = δT 

= 0.2. 
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Thus, we can see that estimate (1), which has been 
synthesized for processing of the signals of the ES, RS, 
and RF lidars, possesses the best combination of the 
accuracy characteristics in comparison with 
conventionally employed estimates (3) and (2). An 
employment of estimate (1) instead of estimate (2) will 
require only a simple change in the algorithm for signal 
processing, while its employment instead of estimate (3) 
will require an additional measurement of the laser pulse 
energies during every sensing step with an acceptable 
accuracy. 

 

We acknowledge Dr. G.N. Glazov for the valuable 
consultations.  

 

REFERENCES 

 
1. W.D. Khinkli, ed., Laser Monitoring of the Atmosphere 
[Russian translation] (Mir, Moscow, 1979), 416 pp. 
2. G.N. Glazov, Statistical Problems of Lidar Sensing of 
the Atmosphere (Nauka, Novosibirsk, 1987), 312 pp. 
3. R. Mezheris, Laser Remote Sensing [Russian translation] 
(Mir, Moscow, 1987), 550 pp.  
 


