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Relations for energy moments of the non–Gaussian radiation field obeying the 
lognormal intensity distribution which permit one to calculate any moments for a 
number of photoelectrons for arbitrary ratio between the sampling time and the 
correlation length of the field have been derived. Analytical approximations for the 
moments, which refine the well–known asymptotes and depend parametrically not only 
on the variance of the intensity logarithm, but also on the relative sampling time, have 
been derived. The range of applicability of these approximations has been determined.  

 
Introduction. In real conditions of propagation of 

laser radiation through the atmosphere the random field 
at the receiver may obey the non–Gaussian statistics as a 
result of violation of the quantum central limit theorem,1 
e.g., due to the following correlations: between the paths 
of scatterers in the process of single scattering by the 
turbulence,2 between the scattering acts in the process of 
multiple scattering,3 and between the phases when the 
beam propagates through the turbulence,4,5 due to the 
small number of aerosols in the scattering volume.2 In 
these cases the statistics of photoelectrons (PEs) obtained 
for the Gaussian fields6 became invalid.  

The lognormal approximation of the light intensity 
distribution has the widest range of applicability for the 
non–Gaussian field.4,5,7–9 The statistics of the number n 
of the PEs appropriate to it has been examined in Refs. 10 
and 11 for the sampling period T n τc (τc is the correlation 

time of the field). In our paper, this statistics describes the 
moments for arbitrary ratios between T and τc.  

"Rigorous" numerical solution. Let P(t) be the received 

power, U = 
⌡⌠
 t 

t+T

P(t′)dt′ be the energy received for the period 

[t, t + T], and mp and σp be the parameters of lognormal 

distribution P. The "level" V(t) = lnP(t) is the Gaussian 

random process with the mean m
V
 = ln mp – 

1
2 ln(1 + γp

2) ,  

the variance s
V

2 = ln(1 + γp
2) and the autocorrelation 

coefficient ρV (t), where γp = σp/mp.  

In the stationary case, the energy moments are given by 
the formula  
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In particular,  
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Using the well–known relation1 between the factorial 
moments of the PEs and the initial energy moments  

 

<n[k]> = ηk<U k> 
 

(η is the quantum efficiency of the detector), we can write 
relations for the initial, central, and factorial moments and 
for the cumulants of the n of arbitrary order, in particular,  
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In order to calculate the relative energy moments 
<U k>/<U>k, an effective algorithm has been constructed in 
Ref. 12 which makes use of the symmetries in integrals (1). 
The numerical calculations of the PEs moments up to 15th 
order have been performed for two shapes of ρV  

 

ρ
V 

(a) = exp(–t2/a2) ;   ρ
V 

(b) = exp(–τ2/a2) cos(τ/b) 

 

for which  
 

τ
c 

(a) = ( )π2
1/2

⋅ 
a
2 ,  τ

c 
(b) = ( )π2

1/2
⋅ 
a
2 ⋅ exp(–ξ2/2) ,  

 

where ξ = a/b.  
Figure 1 shows the relative variance k

ν
 and the 

assymmetry coefficient ka of the PEs for both shapes of ρV. In 

the case of recording the laser radiation transmitted through 
the turbulent atmosphere, the parameter σV characterizes the 

intensity of atmospheric turbulence.4  
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FIG. 1. The dependence of the relation variance kv and 

the asymmetry coefficient ka of the PE distribution on 

the normalized sampling time L(curves 1, 2, and 3) for 
σV (curves 4 and 5) for L = 1. The calculations have 

been performed for two different models of ρV: ρV 
(a) 

(curve 1 and 4) and ρV 
(b) at ξ = 2 (curves 1 and 5) and 

ξ = 1 (curve 3); <n> = 1. 
 

One can see from Fig. 1 that as the number L = T/τc of 

the time phase elements decreases, k
ν
 and ka tend to their 

maxima determined in Refs. 10 and 11 and with increase of L 
they tend to the values, which correspond to the Poisson 
distribution.6 The Poisson approximation of the PE 
distribution is applicable for ρV 

(a) and ρV 
(b) when L is 

moderately large and ξ is small and for ρV 
(b) when L is very 

large and ξ > 1. The approximation from Refs. 10 and 11, vice 
versa, is applicable for ρV 

(b) when L is moderately small and 

ξ > 1 and for ρV 
(a) and ρV 

(b) when L is very small and ξ is small. 

With increase of σV, the values k
ν
 and ka increase markedly 

starting from σV ∼ 0.5–0.7, which is called the "intermediate" 

intensity of turbulence in Ref. 5. When σV = 0 the 

atmosphere does not modulate an amplitude–stabilized laser 
radiation so that k

ν
 and ka obey to the Poisson distribution. 

When σV ≤ 0.3, the distribution of the PEs can be 

approximated by the Poisson distribution even for L ∼ 1. 
Figure 1 demonstrates that the range of applicability of the 
well–known analytical approximations for the distribution 
and the moments of the PEs10,11 is limited by the values 
L ≤ 0.2–0.5 and depends on the shape of ρV.  

Approximate analytic solution. Let us accept the 
approximation ρV(t) = 1 – t2/τ

*
2 , where τ

*
2 = – 2/ρV′′(0), 

assuming that ρV (t) is double–differentiable function at 

t = 0. In this case we have13  
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where  
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 exp(–t2) dt .  

 

When k ≥ 3 the quantity <U ë>a cannot be expressed in 

terms of tabulated functions; for this reason, we should 
approximate Ik . Let us replace the integration variables 

y = uT
κ, where u is the orthogonal matrix, diagonalizing 

u–1Mu = diag(k, k, ..., k, 0) the symmetric nonnegatively 
defined circulant matrix M with eigennumbers λμ = k, 

μ = 1, k – 1 , and λk = 0. In so doing, the integration 

limits remain unchanged. In this case, we have  
 

Ik g Ik′ = ⌡⌠
–ν

*
/ 2

ν
*
/ 2

 
⋅ ⋅ ⋅ ⌡⌠

–ν
*
/ 2

ν
*
/ 2

 exp
⎝
⎜
⎛

⎠
⎟
⎞

–k σ
V
2 ∑

μ=1

k–1

  y
μ

2  dy = 

 

= ν
*
 [(π/k)

1/2
 σ

V 

–1 Φ(z)]
 k–1

 , (3) 

 

where z = k1/2σV ν*
/2.  

From the viewpoint of geometry, this approximation 
means such a rotation of the k–dimensional integration 
cube that its edges become parallel to the eigenvectors of 
the matrix M. When z n 1 this rotation introduces but 
insignificant change in the value of the integral, i.e., Ik′ 

has a correct asymptote Ik′ g ν
*
k. As z → ∞, the equal–

value elipsoids of the quadratic form in Ik are subtended 

to a straight line, on which the eigenvector 

b = {bi ≡ const}, i = 1, k , corresponding to λk = 0, lies, 

so that the contribution to the integral becomes 
proportional to the length of this straight line segment 
wich lies inside the integration volume. The rotation 
decreases its length by a factor of k1/2 , from the 
diagonal length k1/2ν

*
 to the edge ν

*
. For this reason, 

the asymptote Ik′  = ν
*
[(π/k)1/2σV

–1]k–1 is smaller than the 

correct value by a factor of k1/2 for z . 1. In order to 
refine Ik′, it can be corrected, e.g., Ik g Ik′ f, where  
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f = 1 + (k1/2 – 1)Φ(akz), the coefficients ak, k = 2, 3, ..., can 

be determined by numerical methods with the help of Ref. 12.  
Applicability of the analytic approximation. Our 

analysis of the applicability of this approximation of <U k> 
based on Eqs. (2) and (3) covers ρV (a), ρV (b), and the values of 

τ
*
 which are determined by the choice of the parabola in the 

quadratic approximation of ρV in terms of the second 

derivative (the Taylor parabola – T) and based on the 
equality of the correlation lengths (the Mandel parabola –
 M). In the case of τ

* 
(T) the correlation is deliberately 

underestimated and in the case of τ
* 
(M) only the correlation 

shape changes for one and the same correlation lengths:  
τ

* 
(T,a)=2(2/π)1/2τc; τ * 

(T,b)=2(2/π)1/2 (1 + ξ2/2)–1/2 exp(ξ2/2)τc; 

τ
*  

(M,a,b) = (15/8)τc; where according to Ref. 6  

 

τc = ⌡⌠
0

∞

 ρ 2 
V(τ) dτ . 

 

 

 
FIG. 2. The countours of the error δ of the analytical 
approximaton of the energy moments: δ = 5% and k = 5 (1), 
10 (2); δ = 10% and k = 5 (3), 10 (4). 

 
Figure 2 shows the ranges of applicability of <U k>a with 

Ik′ instead of Ik for ρV (a) and τ
* 

(M). These ranges lie below the 

given curves and ensure an error δ = (<U k>a – <U k>)/<U k> 

not larger than the prescribed one for all the moments whose 
orders do not exceed the orders of the moments given above. 
As expected, the accuracy of the obtained analytical  

approximation deteriorates with increase of k, L, and σV . 

For k ≤ 5 with δ ≤ 5%, <U k>a is applicable for weak 

(0 < σV < 0.5), moderate (0.5 ≤ σV ≤ 0.9) and strong 

(0.9 < σV < 1.5) intensity fluctuations when L > 1.3, 

0.66 ≤ L ≤ 1.3, and 0.37 < L < 0.666, respectively. For 
k = 2, d ≤ 5% when 0 < L ≤ 1 and 0 < σV ≤ 4.  

Conclusion. The obtained statistical characteristics of the 
PE numbers on the level of the moments are valid for the 
non–Gaussian fields which obey the lognormal intensity 
distribution at the point receiving aperture for arbitrary ratio 
L between the sampling time and the correlation length of the 
field. These characteristics depend parametrically on L and 
σV, which permits one to analyze the dependence of the PE 

statistics on the conditions of recording of laser signals and to 
solve the inverse problems of photoelectron statistics. The 
analytical approximations proposed for the photoelectron 
moments have a wider range of applicability compared to the 
well–known approximations described in Refs. 10 and 11 and 
are simple in use.  
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