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The performance of an adaptive optical system (AOS) of radiation focusing, 

which consists of a wavefront analyzer in the form of an array of the Hartmann 
sensors and a corrector which is a controllable flexible mirror. Under assumption of a 
complete statistical description of the light field being received, an optimal algorithm 
for control by the AOS intended for compensation for the distortions caused by the 
turbulent atmosphere is synthesized. The dependence of the efficiency of proposed 
algorithm on the main parameters of the AOS and on the environment is examined.  

 
In a number of practically important areas, such as 

laser communication, laser detection and ranging, etc., there 
arises a problem of minimizing the losses of optical radiation 
when it propagates through the turbulent atmosphere.1 This 
problem is usually solved by measuring the phase distortions 
of the wavefront (WF) caused by the random refraction due 
to the nonuniformities of the atmospheric refractive index 
and by their compensations with the help of the 
controllable elements of the adaptive optical systems 
(AOS's). Recently a large number of investigations has been 
devoted to the problems of compensation for the distortions 
in the light wave by the AOS's.2-9  

From the viewpoint of minimizing the compensation 
errors and constructing the optimal algorithms for 
processing of the radiation being received, it is very 
important to use an a priori information about the 
statistical properties of the optical signal (in particular, 
about the spatial correlation of the phases of the 
wavefront on the aperture of the AOS) and about the 
instrumental noise . Meanwhile, in most of the above–
indicated researches the compensation algorithms are 
constructed without taking into account the a priori 
statistical information. At the same time, methods of the 
theory of statistical decisions are adequate for the 
description of this problem of observations of the random 
fields against the background of noise radiation from the 
external sources.10  

The operation efficiency of the AOS depends on the 
accuracy of compensation for the phase distortions of the 
wavefront. In its turn, the compensation accuracy is 
determined mainly by three factors: the accuracy of the 
measuring device which estimates the phases of the 
wavefront in the vicinity of the sensor, the errors in 
estimating the phase of the wavefront from the set of 
these measurements, and, finally, the errors in the 
reconstruction of the phase of the wavefront with the 
help of the controllable optical elements.  

 
1. MEASUREMENTS OF THE PHASE OF THE 

WAVEFRONT  

 

Measuring devices based on the Hartmann sensor are 

most widespread due to the simplicity of their design.9 An 

elementary sensor usually consists of a very simple optical 

system, which forms an image, a photodetector, which 

records the spatial intensity distribution over this image, 

and a processing device for determining the coordinates of  

the centroid of the diffraction spot of the image being formed. 

As is well known,11 under the ideal conditions such a 

processing procedure permits one to estimate the average (over 

the sensor aperture) tilt of the wavefront of radiation incident 

on the aperture. However, actually the intensity distribution, 

in addition to the desired laser signal, involves the background 

radiation, which deteriorates the image contrast and thereby 

results in the errors in the measurement of the wavefront tilt 

of the desired signal. For this reason, the normalized readings 

γ
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∧
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1 + Q
Q  , which are recorded by the array of 

n Hartmann sensors, can be written in the form  
 

γ
∧

i = γi + ξi, i = 1, ..., n , (1) 
 

where γ
∧

xi
 and γ

∧
yi
 are the angular coordinates of the centroid 

of the formed image along 0X and 0Y axes of a chosen 
Cartesian coordinate system in the photodetection plane, k 
is the wave number, R is the radius of measuring aperture 
of the sensor, Q is the signal–to–noise ratio in the sensor, 

γi = 
1

πR ⌡⌠
Ωi

Ωrϕ(r)d2r is the true average tilt of the wavefront 

(normalized by the diffraction size of the image kR) in the 
vicinity of the ith sensor, Ωi is its input aperture, and ξi is the 

noise component of the normalized error of the measuring 
device. We may assume that the mean value of the error of the 
noise component is equal to zero, while the correlation matrix 

is diagonal, i.e., ξT
iξj  = σ2

ξ
δij, where the horizontal bar atop 

indicates an averaging over an ensemble of the background 
noise realizations, the superscript T stands for the matrix 
transposition, and σ2

ξ
 is the variance of the noise component of 

the error. When the measurement errors are limited by the 
radiation of the background12 we have  
 

σ
ξ
2 ≈ 

8

πQmt mr

 

⎝
⎜
⎛

⎠
⎟
⎞

1

 

+

 

π
4 

mr

Q , (2) 

 
where mt and mr are the numbers of temporal and spatial 

noise modes recorded by the sensor.  
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2. ALGORITHM FOR ESTIMATING THE PHASE OF 

THE WAVEFRONT  

 
As was shown in Ref. 4, the problem of radiation 

focusing into the turbulent atmosphere (when we control the 
phase of the radiation wavefront for a Gaussian statistics of 
the phase fluctuations) the optimal energy criterion (the 
maximum radiation intensity delivered at the given point) and 
information criterion (the minimum variance of the error in 
estimating the phase distortions of the wavefront) lead to one 
and the same optimal algorithm. If we use the criterion of the 
minimum of estimating the rms error of the unknown 
parameter, the so–called separation principle13 is valid, in 
accordance with which the problem of seach for the optimal 
control is performed in two stages. At the first stage the phase 
of the wavefront is estimated and at the second the optimal 
control is found using the phase of the wavefront, which has 
been estimated at the previous optimization stage.  

In order to construct the algorithm of the estimating the 
phase of the wavefront, it is convenient to use the 
mathematical apparatus of the statistical decision theory, 
which enables one to find both an optimal (in the sense of 
minimum variance of the error in estimating the phase of the 
wavefront at each point of the aperture) estimate of the phase 
of the wavefront and its variance.  

Let us assume that the random Gaussian field ϕ(r), 

r ∈ Ωa with zero mean and the assigned structure function 

D
ϕ
(r1, r2) is prescribed on the aperture of the AOS. Let us 

change over from the continuous Gaussian field ϕ(r) to the 
Gaussian 1×N random vector ϕT = [ϕ(r1) ... ϕ(rN)]. It is 

necessary to obtain the estimate ĵ of the vector ϕ based on the 

observed 1×2n vector of the measurements ζT = [γ
∧

x1
, ..., γ

∧
xn

; 

γ
∧

y1
, ..., γ

∧
yn
] .  

Under the assumption of a large number of the 
temporal mt and spatial mr modes of the background 

radiation, which is recorded by the detector, the random 
vector ζ may be regarded as Gaussian. The vector [ϕ⏐ζ] 
which is composed from the vectors ϕ and ζ will be then 
also Gaussian. Therefore, using the theorem of normal 
correlation,13 we can write at once the relation for 
estimating the unobservable part of the Gaussian vector (the 
a posteriori mean value) [ϕ⏐ζ] and of the correlation matrix 

B
ε1 = <εT1×ε1> of the estimation error ε1 = ϕ

∧
 – ϕ  
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where the correlation matrices B
ϕϕ

, B
ϕζ

, and B
ϕζ
–1 are 

defined in the following way: B
ϕϕ

 = <ϕϕT>, B
ϕξ

 = <ϕζT>, 

and B
ξξ
 = , the angular brackets denote an averaging over the 

ensemble of realizations of the phases of the wavefront. 
Proceeding in relations (2′) to the limit as N→∞ we will 
obtain the algorithm of estimating the phase of the wavefront 

ϕ
∧
(r) at any point of the aperture r ∈ Ωa and the structure 

function D
ε1(r1, r2) = <[ε(r1) – (r2)]

2>  of the estimation 

error ε1(r) = ϕ
∧
(r) – ϕ(r)  

 

⎩⎪
⎨
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ϕ
∧
(r) = HT(r) B

ξξ
–1ζ ,

D
ε1(r1, r2) = D

ϕ
(r1, r2) – [H(r1) – H(r2)]

T ×

× B
ξ

–1[H(r1) – H(r2)] ,

 (3) 

 

where H(r) = <ϕ(r)ζ> is the column (2n×1) vector. 
Relations (3) are one of the main results of Ref. 4.  

As follows from Eqs. (3), the optimal estimate of the 
phase of the wavefront ϕ(r) at the arbitrary aperture point 
r∈Ωa is a weighted sum of the measurements performed by 

all of the elementary sensors of the system. The weight in 
this sum is determined by both the correlations between the 
phase values at different points of the aperture and the 
measurement errors of sensors.  

 

3. ALGORITHM FOR RECONSTRUCTION OF THE  

MEASURED PHASE OF THE WAVEFRONT  
 

Let us assume that in the plane optically conjugate to 

the plane in which the function ϕ
∧
(r) has been found a 

controllable flexible mirror is located. Let us designate the 
total number of the actuators of the mirror by m and their 
spatial response functions by fl(r) (l = 1, ..., m). The 

problem of reconstruction of the phase of the wavefront 
now reduces to expanding the function (r) most suitably in 
a system of the functions fl(r), i.e., to finding a certain 

function  
 

ϕ
~
(r) = ∑

l=1

m

al fl(r) = fT(r)a , (4) 

 
which would be as close as possible to the function (r). It is 

clear that subtracting from ϕ
∧
(r) its approximation (r) we 

will compensate for the phase distortions.  
The degree of proximity of the functions (r) and (r) 

can be characterized in different ways, but the following 
measure is most natural:  

 
1
Sa⌡⌠

Ωa

ε2
2(r) d2r , (5) 

 
where ε2(r) = (r) – (r) is the error of control and Sa is the 

area of the aperture Ωa. Such a control (i.e., choice of the 

coefficients al) is regarded as optimal by minimizing 

residual error (5). In order to find the unknown coefficients 
al, we should substitute Eq. (4) into expression (5), take 

the derivatives of the derived relation with respect to al 

(l = 1, ..., m), and set them equal to zero. The coefficients 
which have been thus found minimize expression (5). In a 
matrix representation the solution of the system has the form  

 

a = F–1 
1
Sa

 ⌡⌠
Ωa

ϕ
∧
(r)f(r) d2r , (6) 

 

where F = 
1
Sa

 ⌡⌠
Ωa

f(r) fT(r) d2r is the matrix of integrals of 

the overlap of the response functions. From physical  
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considerations it is clear that the system of actuators and 
response functions should be chosen so that the diagonal 
elements of the matrix Fil were maximal, while for i ≠ l the 

elements Fil had to rapidly decrease as ⏐i – l⏐ increases. 

This means that the matrix F is nondegenerated and the 
inverse matrix F–1 exists.  

With an account of Eqs. (3), (4), and (6), the optimal 
algorithm for the reconstruction of the phase of the 
wavefront can be written in the form  

 

ϕ~(r) = fT(r)F–1FB
ξξ
–1ζ , (7) 

 

where Φ = 
1
Sa

 ⌡⌠
Ωa

f(r)HT(r) d2r is the (m×2n) matrix which 

characterizes the degree of adjustment of the shape of the 
response function and the function of correlation between 
the reading and the phase.  

Formally, Eq. (7) is a solution of the posed problem. 
This formula will be used in order to analyze the efficiency 
of the compensation algorithm.  

 

4. ANALYSIS OF THE EFFICIENCY OF THE 

COMPENSATION ALGORITHM  
 

As a measure of the efficiency of compensation for the 
phase distortions with the help of algorithm (7) for 
reconstruction of the phase of the wavefront we will use the 
Strehl factor6  
 

K = 〈 1
Sa
⌡⌠
Ωa

 eiε(r) d2r
2

〉 , (8) 

 

where averaging must be carried out over the ensembles of all 
the random mechanisms that are responsible for the random 
nature of the compensation error ε(r)=ε1(r) + ε2(r)=ϕ(r) –(r),  

r~ ∈ Ωa. By virtue of the fact that estimate (7) depends 

linearly on the readings ζ while the latter are the Gaussian 
random quantities, it is clear that the error ε(r) obeys the 
normal distribution. For this reason,  
 

K = 
1

Sa
2 ⌡⌠

Ωa

d2r1 ⌡⌠
Ωa

d2r2exp(–1/2D
ε
(r1, r2)) , (9) 

 

where, in accordance with Eq. (7), the structure function of 
the compensation error D

ε
(r1, r2) is  

D
ε
(r1, r2) = <[ε(r1) – (r2)]

2>  = D
ϕ
(r1, r2) –  

 

– 2 [f(r1) – f(r2)]
T F–1F B

ξξ
–1 [H(r1) – H(r2)] +  

 

+ [f(r1) – f(r2)]
TF–1Φ B–1ΦTF–1 [f(r1) – f(r2)] . (10) 

 

The derived equations (9) and (10) permit us, generally 
speaking, to calculate the Strehl factor k when the shape of 
the response function f(r) and the shape of the structure 
function of the phases of the wavefront of the initial signal 

D
ϕ
(r1, r2) are arbitrary. In this case, however, the main 

difficulty is in calculating the elements of the matrices H(r), 
B

ξξ
, and Φ. Such calculations are given in Appendix for a 

locally isotropic field of the phase distortions which are 
described by the structure function of the form  

D
ϕ
(ρ) = 2(ρ/ρc)

5/3, where ρc is the coherence radius of the 

wave being received and by the response functions, which 
have an identical Gaussian shape and differ only by the point 
of exerting of the deforming force rl: fl(r) = exp(–π/ST⏐r –

 rl⏐
2), where ST is the parameter which describes the spatial 

scale of the response function.  
The resulting Strehl factors, which have been calculated 

using the formulas from Appendix, are given in Tables I–IV. 
In so doing, it was assumed that the center points of the 
apertures of the Hartmann sensors and the clamping points of 
the actuators were located equidistantly over a square aperture 
and their number was, generally speaking, different.  

Table I illustrates the Strehl factor as a function of the 
number of the control channels m for the following fixed 
parameters of the problem: the number of the sensors of the 
measuring device n = 9, the signal–to–noise ratio in a sensor 
Q = 10, the number of background temporal modes mt = 103 

and of background spatial modes mr = 102 (which are recorded 

by a sensor), and the number of coherence spots in the initial 
field over the AOS aperture Nn = Sa/πρ2

k = 3.  
 

TABLE I. 
 

m 

4 9 16 ∞ Note 

K 

0.359 0.505 0.588 0.935 Kn = 0.250

 
The column of the table which corresponds to m → ∞, 

describes the situation in which the reconstruction of the 
phases of the wavefront based on their estimated realizations 
(with errors) is performed absolutely correctly with the help 
of algorithm (2), and Kn denotes the Strehl factor of a 

nonadaptive system. The data of Table I indicate that 
algorithm (7) of reconstruction of the phase of the wavefront 
is efficient enough. In addition, the deterioration of the 
quality of compensation for the phase distortions of the 
wavefront associated with the flexible mirror control 
algorithm are much more significant than that at the stage of 
estimation of the phase of the wavefront. As the results of 
calculations show, such a situation lasts as far as the relation 
Nn/n  1 is valid.  

Which is more important for algorithm (2) either to 
measure the local characteristics, i.e., to choose small–size 
sensor apertures and separate them (h = S/(Sa/n) < 1, where 

S is the area of the sensor aperture and S/n is the area of the 
responsibility zone of an individual sensor) or to increase the 
signal–to–noise ratio at the expense of increasing the sensor 
aperture, is solved in accordance with Table II in favor of 
choosing a dense packing (h = 1) of the sensor subapertures.  

 

TABLE II.  
 

m 

1 3 10 Note 

 0.536 0.351 0.198 Q = 0.1 

0.3 

    

 0.944 0.857 0.683 Q = 10 

 0.879 0.821 0.706 Q = 0.1 

1 

    

 0.973 0.935 0.833 Q = 10 

 

When the number of the control channels m is fixed it 
is also important to provide the required width of the 
response function of the corrector in order to minimize the 
compensation error. The data of Table III indicate that, 
when varying the width of the response function (with the 

parameter hT = ST/⎝
⎛

⎠
⎞Sa

n  which has the sense of the degree of  
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filling of the responsibility zone of the actuator by the 
response function), the optimum lies near hT = 1. The physical 

interpretation is more or less obvious: it is necessary to arrange 
the actuator in such a way that any large gaps between the 
individual peaks of the response functions be absent (this is 
obvious to be bad), but their strong overlap is also 
unadmissible, since it does not enable processing of the small 
scales of the phase fluctuations.  

 

TABLE III.  
 

hT 

0.3 0.6 1 2 3 Note 

      Nn = 3 

K 

0.242 0.344 0.505 0.425 0.324 n = m = 9
Q = 10 

 

It follows from Table II that in order to reach the Strehl 
factor K at least one sensor for one coherence spot is required 
(i.e., Nn/h ≤ 1). In addition, the signal–to–noise ratio on the 

sensor aperture Q must be of the order of 10.  
The given formulas make it possible to take into account 

quite a large number of factors, which affect the AOS 
efficiency, both at the stage of estimating the phase of the 
wavefront (e.g., the parameters of the turbulent atmosphere 
are taken into account by means of Nn, the signal–to–noise 

ratio – by Q, the number of sensors – by n, and the packing 
density of the latter – by h) and at the stage of control with 
the flexible mirror (the number of the actuators is taken into 
account by m and their separation – by hT).  

 
APPENDIX  

 
For the isotropic (locally isotropic) field ϕ(r), it is 

convenient to calculate the matrix elements H(r), B
ξξ
, and Φ 

using the spatial spectrum of phase fluctuations of the light 
wave G

ϕ
(κ), which describes the correlation properties of the 

wave. In this case, the cross–correlation functions of the phase 
of the wavefront at the point r on the receiving aperture and 
the readings of the wavefront tilt Hi(r) of the arbitrary ith 

sensor as well as the correlation matrix elements of the 
measurement errors B

ξξ
, including both the dynamic and the 

background components, assume the forms  
 

Hi(r) = 
2πR

⏐r – ri⏐
 
⎣
⎡

⎦
⎤x – xi

y – yi
 ×  

 

× ⌡⌠
0

∞

G
ϕ
(k)G0(k)J1(k⏐r – r1⏐)k2dk , (11) 

 

and 

B
ξξ
 = R2 

⎣
⎢
⎡

⎦
⎥
⎤∂2/∂xi∂xj ∂2/∂xi∂yi

∂2/∂yi∂xj ∂2/∂yi∂yj

 ×  

 

× ⌡⌠
0

∞

G
ϕ
(k) G0

2(k) J0(k⏐ri – rj⏐)kdk +  

 

+ 
1
2 σξ

2 E ,  i = 1, ..., n ;  j = 1, ..., n . (12) 
 

The following notations are used in Eqs. (11) and 
(12): ri = (xi, yi) is the radial distance of the aperture 

center of the ith sensor, G0(κ) = 
2J1(kR)

kR  is the filtering 

function of the receiving aperture of the sensor with radius  

R, J0(...) and J1(...) are the zeroth and first order Bessel 

functions, and E is the (2n×2n) unit matrix.  
When calculating the matrix elements Φ we will 

integrate between the infinite limits thereby neglecting the 

edge effects (which is justified for m > 1). In this case,  
 

Φil = 
2πR

⏐ri – rl⏐
 
⎣
⎢
⎡

⎦
⎥
⎤xi – xl

yi – yl

 ×  

 

× 
1
Sa

 ⌡⌠
0

∞

G
ϕ
(k) G0(k) Gf (k) J1(k⏐r1 – rl⏐)k2dk , (13) 

 

where G f(κ) = 
⌡⌠
–∞

∞

f(r)exp(iκrd2r) is the spatial spectrum of 

the response function.  
The exponential spectral density  

G
ϕ
(κ) = 

5
3 

Γ(11/6)
Γ(1/6)

 
22/3

πρ5/3
c 

 κ
–11/3

 corresponds to the structure 

function of the phases the wavefront of the form 
D

ϕ
(ρ) = 2(ρ/ρc)

5/3, which is employed here. Although here 

we do not succeed in finding the exact values of the integrals, 
which enter in Eqs. (11), (12), and (13), we can, however, 
derive the related approximate formulas. Let us give the 
detailed calculations of the integral of Eq. (11) as an example  

 

I(⏐r – ri⏐, R) = ⌡⌠
0

∞

k–8/3J1(k⏐r – ri⏐) J1(kR) dk . (14) 

 

This integral is a symmetric function about the 
parameters ⏐r – ri⏐ and R. For this reason, when 

approximately calculating it, it is convenient to consider two 
regions: ⏐r – ri⏐ ≤ R (i.e., r – ri ∈ Ωi) and ⏐r – ri⏐ > R (r –

 ri ∉ Ωi). If ⏐r – ri⏐/R ≤ 1, then it is important to take the 

tails of the function J1(κR) into account while to expand the 

function J1(κ⏐r – ri⏐) in a series, and vice versa, if  

⏐r – ri⏐/R > 1, then J(κ⏐r – ri⏐)) should be preserved while 

the second multiplier should be expanded in a series. Taking 
into account the first three terms of the series we will obtain  

 

Hi(r) ≈ 
5
3 ⎝
⎛

⎠
⎞Nph

n

5/6

⎣
⎢
⎡

⎦
⎥
⎤

x – xi

R

y – yi

R

 ×  

 

× 

⎩
⎪
⎨
⎪
⎧

 

1 – 

5
72 ⎝
⎛

⎠
⎞⏐r – ri⏐

R

2

–
35

15552⎝
⎛

⎠
⎞⏐r – ri⏐

R

4

 ;

for ⎝
⎛

⎠
⎞⏐r – ri⏐

R  ≤ 1

⎝
⎛

⎠
⎞R

⏐r – ri⏐

1/3

⎣
⎡1 – 

5
72 ⎝
⎛

⎠
⎞R

⏐r – ri⏐

2

–

– 
35

1555 ⎦
⎤

⎝
⎛

⎠
⎞R

⏐r–ri⏐

4

;  for ⎝
⎛

⎠
⎞⏐r – ri⏐

R  > 1,

(15) 

 

where Nn = Sa/πρ is the number of coherence spots on the 

aperture of the AOS and h = S/(Sa/n) is the ratio of the area 

of the sensor aperture S = πR2 to the area of responsibility 
zone Sa/n of an individual sensor.  
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It is obvious that the largest error in calculating 
integral (14) is obtained when ⏐r – ri⏐/R = 1. However, in 

this case the integral can be calculated exactly  
 

I(R, R) = 
30
33 

2–8/3

R1/3  
Γ(1/6) Γ(5/3)

Γ3(11/6)
 . (16) 

 
Comparing the latter relation with the approximate 

one we obtain that the error of the approximate relation 
does not exceed 0.2%.  

The integrals in Eq. (13) are calculated in the same way  
 

Φil = 
5
3 ⎝
⎛

⎠
⎞Np

m  hT

5/6
.

h.hT

n.m
 

⎣
⎢
⎡

⎦
⎥
⎤

xi –xl

RT

yi – yl

RT

 × 

 

( ) ( )

( )

1 1 1 1

T T

2
1 1

T

1 1 1 1

T

2

1 1

T

B
1/6,2; 7/6,2;

12

7 r r
B 13/6,2; for 1;

432

1
1/6,2; B 7/6,2; B

12

7 r r
13/6,2; B for 1,

432

⎧ ⎛ ⎞ ⎛ ⎞
 − −  − +⎜ ⎟ ⎜ ⎟⎪

⎝ ⎠ ⎝ ⎠⎪
⎪ ⎜ − ⎜⎛ ⎞

+  −   ≤⎪ ⎜ ⎟
⎝ ⎠⎪

⎨
⎪  − −  − +
⎪
⎪

⎜ − ⎜⎪ ⎛ ⎞
+  −   >⎜ ⎟⎪

⎝ ⎠⎩

i l

i l

h m h m
F F

h n h n

h m
F

h n R

h m
F F

h n

h m
F

h n R

 

 (17) 
 

where B = 
π⏐ri – rl⏐

ST
 , hT = ST/(Sa/n) is the coefficient of 

filling of the responsibility zone of the actuator by the 
response function, and 1F1(α, β; x) is the degenerated 

hypergeometric function. The largest error of calculating 
integral (14) occurs when (⏐ri – rl⏐ = R as hT→0. But an 

exact value of the integral in this situation has already been 
calculated and is given by formula (16), and since in this 
case Φil = Hi(ri), the error of approximate relation (17) also 

does not exceed 0.2%.  
We succeed in calculating the integral in Eq. (13) with 

the use of the quite exact approximation for the squared 
filtering function of the sensor aperture  

G2
0(κ) g exp( )–

k2R2

4  (see Ref. 11). In so doing, instead of 

Eq. (12) we obtain  
 

B
ζζ

 = 
5
3 Γ (11/6)⎝

⎛
⎠
⎞Np

n  h
5/6

⎣
⎢
⎡

⎦
⎥
⎤P(xi, xj) s(xi, yj)

s(yi, xj) P(yi, yj)
+ 

1
2 σ

2
ζ
 E,(18) 

 

where 

P(xi, xj) = 1F1⎝
⎛

⎠
⎞1/6, 2; – 

⏐ri – rj⏐
2

R2 – 

 

– 
1
6 ⎝
⎛

⎠
⎞xi – xj

R

2

1F1⎝
⎛

⎠
⎞7/6, 3; – 

⏐ri – rj⏐
2

R2  ; 

 

s(xi, yj) = s(yi, xj) = – 
1
6 

(xi – xj) (yi – yj)

R2  ×  

 

× 1F1⎝
⎛

⎠
⎞7/6, 3; – 

⏐ri – rj⏐
2

R2 . 

 
It follows from Eq. (18) that the diagonal elements of 

the matrix of the measurement errors are equal to 

 
5
3 Γ(11/16)⎝

⎛
⎠
⎞Nnh

n

5/6

 + 
σ2
ζ

2 . At the same time, it is easy to 

find an exact expression for the diagonal elements which is 

equal to 
50
33 

Γ(5/3)

Γ2(11/6)
 ⎝
⎛

⎠
⎞Nnh

n

5/6
 + 

σ2
ζ

2  . Thus, the error of the 

approximate relation for the elements of the correlation 
matrix (13) does not exceed 1.5% (at least, in calculating 
the variances).  
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