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The CO2 absorption coefficient in the wing of the 4.3 µm band at densities up to 

80 amagat have been calculated using the spectral line wing theory. The calculated 
and measured data show a satisfactory agreement. The similarity and differences 
between our theoretical approach and that based on the calculation of the matrix 
elements of the relaxation operator are discussed.  

 
1. INTRODUCTION  

 
The high–frequency wing of the 4.3 μm band of CO2 is 

the classical object for which the deviation of the measured 
coefficients from the calculated as a sum of Lorentzian lines 
has been discovered and is still being studied.1,2 A theoretical 
description of these deviations is generally related to a detailed 
study of molecular collisions in the presence of the radiation 
absorption. Such a treatment appeared to be rather 
complicated and failed to provide a prevailing opinion on the 
processes responsible for the line wings. This fact and the 
obvious importance of studying the nonresonance IR 
absorption for practical applications keep up unremitting 
interest in the experimental investigations of the behavior of 
the absorption coefficient under different thermodynamic 
condition. The objective of this paper is to discuss in terms of 
the line wing theory the interesting experimental results 
obtained by Hartmann et al. in Refs. 3 and 4.  

 

The absorption measurements made for the CO2–N2 

gas mixture in the trough between the P66 and P68 lines of 

the 4.3 μm band of CO2 at pressures of 1–7 atm and 

temperatures of 296 K and 370 K are given in Ref. 3. The 
absorption measurements for pure CO2 in this band wing at 

normal temperature and high densities (1–80 amagat) have 
been presented in Ref. 4. As Hartmann et al.3,4 note, the 
Lorentzian calculations greatly overestimate the absorption 
in the cases under consideration. The authors of Refs. 3 and 
4 claim that their experimental results can be adequately 
described by taking into account the effect of spectral line 
mixing. The assumption about dominant role of the line 
mixing in the formation of the IR line wing absorption is 
being widely used.5–9 The substantiation of this version 
generally proceeds from the relation for the absorption 
coefficient κ(ω) in terms of the resolvent operator (see, for 
example, Ref. 4).  

 

κ(ω) ∼ Φ(ω) , 
 

Φ(ω) = ∑
υi Ji υj Jj

 
 ρυ

i Ji
 < υi Ji⏐M⏐υj Jj> ∑

υi′ Ji′ υj′ Jj′

 
 <υi′ Ji′⏐M⏐υj′ Jj′> ⊗ Im {< υi Ji υj Jj⏐{ω – ωυi Ji υj Jj

 – iW}–1⏐ υi′ Ji′ υj′ Jj′>} . (1) 

 
Here the subscripts υi and Ji number the states of the 

absorbing molecule, <υiJi⏐M⏐υjJj> are the matrix elements 

of the dipole moment operator, ρυi Ji
 is the density of states, 

and W in the resolvent operator { }–1 is the relaxation 
operator. In the impact approximation W is independent of 
the frequency ω.10,11 The diagonal elements of W are 
related to the pressure broadening coefficients and shifts of 
the lines, i.e.,  

 

<υi Ji υj Jj⏐W⏐υi Ji υj Jj> = γυi Ji υj Jj
 – iΔυi Ji υj Jj

 . (2) 

 
The off–diagonal elements W account for the line mixing. 
These are generally calculated using different fitting laws as 
well as sum rules which relate the diagonal and off–diagonal 
elements of W. Note that the calculations are valid for 
frequencies lying near the line centers.  

The matrix elements of W were approximated in Ref. 3 
using their exponential dependence on the energy difference of 
the corresponding levels. The matrix elements of W were 
determined in Ref. 4 based on their relation to the rotational 
cross section. The data on the absorption coefficient given in 
Ref. 3 were adequately described by these matrix elements of  

W, whereas the measurements reported in Ref. 4 disagreed 
with these calculations. The discrepancy increased with 
pressure and separation from the line centers. The authors of 
Refs. 3 and 4 arrived at the correct conclusion that the 
discrepancy was due to the inadequacy of the impact 
approximation for the description of the line wings. They saw 
possible way out of the situation in direct calculation of W, in 
particular in accounting for its frequency dependence. Their 
optimism was based on Refs. 12 and 7 in which the frequency 
dependence of the matrix elements of the relaxation operator 
W(ω) for the CO2–Ar mixture was obtained using a certain 

theoretical approach. The latter will be discussed in Section 3.  
It appears expedient at this point to make some remarks. 

Studying the transmission spectra the authors of Ref. 4 have 
compared their measurements with various calculations 
including the calculations which employ the so–called 
"modified" Lorentzian line shape:  

 

kML(ω) = ∑
υi Ji υj Jj

 
 k

L
υi Ji υj Jj

(ω) χ(ω – ωυi Ji υj Jj
) (3) 

 

with the parameters for χ taken from Ref. 13. The agreement 
between the calculations based on the line shape (3) and the  



experiment was quite satisfactory.4 Nevertheless, while 
recognizing the high accuracy of the modified Lorentzian 
model (3) and the inadequacy of the approximate account of 
the line mixing the authors of Ref. 4 still regarded this failure 
as being related to an insufficient accuracy of the calculations 
of the relaxation operator and made no question of the 
importance of the line mixing in the wings. Meanwhile the 
fact the line shape (3) has been successfully applied in practice 
can also be the evidence of the importance of using the proper 
line shape in the wing in the absence of line mixing. There 
remains a question whether the parameters in χ account for the 
interference effects. However, in the case of line wings in the 
IR molecular spectra the line wing theory and its 
applications14–17 make it possible to conclude that an adequate 
line shape is of critical importance. In Section 2 the 
measurements of Refs. 3 and 4 are interpreted from the 
standpoint of the above theory.  

 
2. RESULTS OF CALCULATIONS  

 
To begin with, we will make a general remark which 

appears to be essential for understanding the line wing 
problem. In the asymptotic case of small Δω near the line 
center the line contour is known to have a simple dispersive 
shape. When one passes over to larger values of Δω the impact 
approximation must be rejected. This fact is generally treated 
as the necessity to account for the collision dynamics, which 
naturally makes the mathematical problem of line shape 
calculations much more complicated. Stepping aside from the 
line center asymptotics, most theoretical studies of the line 
wing problem just cannot overcome the above difficulties. It 
may be justified, when intermediate frequencies are important 
in the problem. However, when the considerable separations 
from the line center are studied, the other asymptotics takes 
place – the large frequency detunings. This fact should lead to 
an expression for the line shape which is again simple enough 
and the collision details should appear unessential though for 
the other reasons than in the line center. It is this alternative 
asymptotics which is considered in the spectral line wing 
theory.14–17  

The kinetic equation for the description of the line 
shape is obtained in Refs. 15 and 16 proceeding from the 
general assumptions. It contains the sum of two terms each 
of them being predominant in one of the asymptotic cases  

 

i(ω – ωmn)Qmn + (Mρ1)mn = (ω – ωmn)
2Imn + Jmn , 

 

κ(ω) = (1/π) ReSp1MQ(ω) . (4) 
 

Here M is the dipole moment operator, ρ1 is the density of 

states of the absorbing molecule, Imn and Jmn are rather 

complicated integrals including the operator Q. In the case 
of small Δω the first term on the right side of Eq. (4) is 
negligible, and the usual dispersive expression for κ is 
followed. In the case of large Δω the second term is 
negligible, and we arrive at the following relation for κ 
describing the far wing of the ith line  
 

κ = Da ∑ 
 SiΔω–1–3/a F(Ri(Δω), T) = Da ∑ 

 SiΔω–1–3/a × 
 

× 
1
Ri

 ⌡⌠
0

Ri

dR e–V(R)/kT R (R2
i – R2)–1/2 . (5) 

 

The advantages turned out to be realized in this relation which 
are conditioned by the asymptotics of "large frequency  

detunings". Thus, in its derivation the integral over time in 
calculation of the spectrum of the correlation function is taken 
by the stationary phase method. The stationary points are 
determined by the energy conservation law  

 

ΔEmn = � ω = Ca/Ri
a , (6) 

 
where ΔEmn is the energy difference of the states 

corresponding to the transition in the system of interacting 
molecules. In such a manner the quantum problem of 
solving the Schrodinger equation reduces to that of 
determining the roots of equation (6). The classical 
trajectory of the center–of–mass motion is also important 
only in the vicinity of the stationary point, and with a 
sufficient reason can be approximated by a straight line in 
this small zone. All the above discussed together with the 
use of the Gibbs factor containing the intermolecular 
interaction energy V(R) just give the required relation (5) 
describing the line wing. The parameters of the problem are 
the parameters of the relation approximating the quantum 
energy difference of interacting molecules (6). They are a, 
Ca and Da, which are determined from the comparison of 

the experimental and calculated absorption coefficients. The 
potential V(R) is derived from the potential Emn by 

averaging over the quantum variables. We take it usually in 
the form of the Lennard–Jones potential for calculations in 
the framework of the spectral line wing theory.  

According to this scheme which has become traditional 
for us we calculated of the absorption coefficient κ(ω, P, T) 
for conditions specified in the measurements published in 
Refs. 3 and 4.  

The line shape used in our calculations was obtained 
on the basis of the analysis of the CO2 absorption data at 

different temperatures published in Refs. 18 and 19. Its 
parameters are presented in Table I.  

 

TABLE I. Line shape parameters.*  
 

CO2–N2 

C5, D5 C14, D14 C10, D10 

 

6.6 0.005494 4.8412 0.0005230 5.891 0.00009352 
CO2–CO2 

C5, D5 C8, D8 C16, D16 

6.5 0.02418 6.73 0.001245 5.0601 0.0004945 

*) [Ca] = cm–1–1/a , [Da] = cm–3/a amagat–1  
 

The simple fit of energy difference by monomial (6) 
cannot, certainly, be satisfactory for a wide range of 
separations. We have chosen the way of "piecewise" 
approximation of ΔE by different monomials in the 
appropriate ranges of separations, that can be clearly traced 
in the line shape. Different sets of Ca and Da refer to the 

different intervals Δω. Fig. 1 shows the portions of the 
"composite" contour. The line shape constructed in such a 
way is independent of γ, except for the central part. 
Therefore, for the comparison of the composite and 

empirical18,19 line shapes the values κLχ/S are drawn in 
Fig. 1 in the case of CO2–Ne mixture for γ varying from 

0.055 to 0.115 cm–1atm–1 at T = 296 K. This line shape 
allows us to reproduce the temperature variations of 
deviations of the experimental absorption data published in 
Ref. 5 from the results calculated with the dispersive line 
shape for CO2–CO2 and CO2–N2 mixtures (see Ref. 20).  



 
 

FIG. 1. Individual line shape of CO2 broadened by N2; 

κ5 , κ14 , and κ10 are the portions of the composite shape at 

T = 296 K. The range of variation of the line shape for 
different half–widths19 is hatched. 

 
The results of the absorption coefficient calculation 

using the above–discussed CO2–N2 line shape are shown 

in Figs. 2 and 3 and listed in Table II. The value Nκ is 
the absorption coefficient κ(ω, P, T) divided by the CO2 

mole fraction. The dependence of κ(ω, P, T) on pressure 
and temperature is reproduced quite satisfactory.  

 
TABLE II. Pressure dependence of the CO2–N2 

absorption coefficient.  
 

T = 296 K, 
ω = 2387.62 cm–1

 

T = 370 K, 
ω = 2387.64 cm–1

 

P, atm Nκexp, 
cm–1

 

Nκcalc, 
cm–1

 

Nkcalc

Nkexp 
P, atm Nκexp, 

cm–1
 

Nκcalc, 
cm–1

 

Nkcalc

Nkexp

1.00 
1.46 
2.42 
3.41 
4.44 
5.35 
6.35 
8.0 
10.0 

– 
0.104 
0.274 
0.489 
0.744 
0.980 
1.230 

– 
– 

0.490 
0.102 
0.264 
0.485 
0.751 
1.009 
1.312 
1.858 
2.609 

– 
0.99 
0.96 
0.99 
1.01 
1.03 
1.07 
– 
– 

1.0 
2.11 
2.76 
3.34 
3.75 
4.19 
4.90 
8.0 
10.0 

0.115 
0.490 
0.800 
1.120 
1.350 
1.610 
2.040 

– 
– 

0.107 
0.451 
0.738 
1.032 
1.248 
1.500 
1.908 
3.763 
4.981 

0.93 
0.92 
0.92 
0.92 
0.92 
0.93 
0.94 
– 
– 

 
The results drawn in Figs. 4 and 5 of Ref. 3 showed 

the division of the absorption coefficient into the 
constituent parts which depend on pressure in different 
ways. This division is fruitful in the study of the line 
wings. The analogous results of our calculation are shown 
in Fig. 4. The value Nκsel represents the part of the 
absorption coefficient which is calculated with the use of 
the dispersive line shape and contains mainly the 
contribution of the two nearest lines. The rest of 
absorption Nκcont is due to the contributions of the wings 
of distant lines. We denoted these parts as selective and 
continual absorption. Their relative contribution to the 
absorption coefficient depends significantly on the 
thermodynamic conditions. Thus, the selective absorption 
contribution increases with temperature at the given 
frequency and pressure. The rise in pressure, however, can 
result in increase of the continual absorption 
contribution, which becomes more and more pronounced, 
and for the "lower" frequency the lower is the 
temperature. At higher pressures the absorption is  

completely determined by the line wings. The same 
pattern is also observed in the case of the pure CO2 . The 

corresponding curves are given in Fig. 5 for the frequency 
of 2450 cm–1 beyond the band head, where the 
contribution of the hot bands could become significant 
with rise in temperature.  
 

 
 

FIG. 2. The CO2–N2 absorption coefficient divided by 

the mole fraction of CO2 at T = 301 K: 1) Nκ

calc

, 2) Nκ

L

, 

3) Nκ

exp

 at P = 0.49 atm, and 4) Nκ

exp

 at P = 1.94 atm.  
 

 
 

FIG. 3. Pressure dependence of the absorption coefficient 
Nκ(CO2–N2) at two temperatures: 1) Nκ

exp

, 2) Nκ

calc

, 3) Nκ

L

, 

and 4) Nκ calculated on account of the line mixing effect.3 
a) T = 296 K and ω = 2387.62 cm–1, b) T = 370 K and 
ω = 2387.64cm–1.  
 

Beyond the head of the 4.3 μm band the absorption 
at the normal temperature is practically completely 
determined by the line wings and, therefore, it is the 
most suitable object for the test of the line wing theory. 
As Fig. 6 shows, it stands this test successfully.  

Thus, the experimental data of Refs. 3 and 4 are 
described adequately by the line wing theory, 
representing the absorption coefficient κ(ω, P, T) as the 
sum of contributions of individual lines with the 
appropriate wings.  

 



 

  
 

FIG. 4. Pressure dependence of different components of the absorption coefficient: 1) Nκ

exp

/P2, 2) Nκ

calc

/P2, 3) Nκ

sel

/P2, 
and 4) Nκ

cont

/P2. a) T = 296 K and ω = 2387.62 cm–1, b) T = 370 K and ω = 2387.64 cm–1.  
 

 
 a b 

 

FIG. 5. Variations with pressure of the total CO2 absorption coefficient and its selective and continual parts at different 

temperatures and ω = 2450 cm–1: 1) κtot, 2) κcont, and 3) κsel. a) T = 300 K and b) T = 627 K.  
 

  
 a b 
 

FIG. 6. The CO2–N2 transmission spectrum at T = 291 K for l = 4.4 cm. Points denote the experimental data published in 

Ref. 4, dashed curves denote the calculation taking into account the line mixing effect, and solid curves denote our calculation. 
Case a: 1, 1′) ρ = 1.62 amagat; 2, 2′) ρ = 7.27 amagat; and 3, 3′) ρ = 17 amagat; Case b: 1, 1′) ρ = 29.3 amagat;  
2, 2′) ρ = 51.5 amagat; 3, 3′) ρ = 77.1 amagat;  

 
3. ON THE PECULIARITIES OF CALCULATIONS OF 

THE ABSORPTION IN THE LINE WING 
 
In this concluding Section we note briefly the 

similarity and difference between two theoretical approaches  

to the line wing problem with the use of calculation of the 
matrix elements of the relaxation operator1,2,7 and with the 
use of the asymptotics "large frequency detunings",14–16 
contemplating the detailed publication of this comparative 
analysis later.  



1. Relation (1) has been obtained by Fano in Ref. 21 
using the factorization of the density matrix under 
condition V = 0. It is possible to make the factorization 
within the framework of the semiclassical representation22 
without excluding the intermolecular interaction 
potential. In this case the method of Fano's resolvent12,7 
and the kinetic equation method14–16 are equivalent.  
 

2. The use of the explicit form of the energy 
conservation law in the presence of the radiation 
absorption and of the intermolecular interaction in the 
process of the statistical averaging is the main point in 
the spectral line wing theory (see Ref. 14 for review of earlier 
references); this point is also available in Refs. 12 and 7.  

3. The factors mentioned in item 2 are decisive for the 
spectral and temperature behavior of the absorption coefficient 
in the line wings (see Refs. 14–16 and references cited there). 
Their effect is so strong that, for example, the solution to the 
Schrodinger equation in Ref. 12, where the omitted and 
included terms were of the same order of magnitude, 
nevertheless, allowed us to obtain the CO2–Ar absorption 

coefficient12 which was in a satisfactory agreement with the 
experiment and with the results of the calculations based on 
the line wing theory.23  

4. If we bear in mind items 1–3 the opposite 
conclusions about the line mixing effect made on the basis 
of these two approaches seem to be unexpected. Thus, the 
authors of Refs. 12 and 7 have obtained for the diagonal 
and off–diagonal matrix elements the values of the same 
order of magnitude. According to the line wing theory 
evaluations,15 the interference contribution to the 
absorption coefficient is not more than 15–20% and 
decreases with increase of the frequency detuning. As can 
be seen from items 1–3, the starting principles of both 
approaches are practically the same. The differences 
appear in the process of making approximations and in 
the computing realization.  

Thus, both approaches are developing in one direction, 
though with some delay in time, and should lead to 
approximately analogous results. The differences pointed out 
in item 4 will be discussed in our further publication.  
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