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The variance and the frequency correlation function of intensity fluctuations 
of optical waves are theoretically studied in the case of wave propagation through 
an aberration-free defocusing lens-like medium (a refraction channel) with either 
discrete or continuous random inhomogeneities of the dielectric permittivity. The 
statistical characteristics of the Gaussian beam intensity fluctuations are calculated 
employing the Bom approximation for the solution of the equation describing the 
fourth-order coherence function of the frequency-diversity monochromatic waves. It 
is demonstrated that the intensity fluctuations of optical wave in such a lens-like 
medium with either discrete or continuous random inhomogeneities, are weaker than 
in a regularly .homogeneous medium. The intensity fluctuations become the weaker, 
the larger is the initial beam divergence. The intensity fluctuation frequency 
correlation for optical wave propagating through the tens-like medium with 
continuous random inhomogeneities coincides with that for the regularly 
homogeneous medium. The existence of the regularly refractive inhomogeneity in the 
discrete scattering medium results in a larger scale of the intensity fluctuation 
frequency correlation. 

 

At present the techniques developed  for the optical 
refraction spectroscopy of super-high resolution1–7 are 
based on recording the intensity of a sensing laser beam 
wtiich propagates through the region exposed to the high-
power optical radiation. Systematic errors of such 
techniques, resulting from the aberrations produced by 
the lens-like medium, have been considered elsewhere.8–9 
The present paper is devoted to the study of the random 
errors of the techniques of optical refraction spectroscopy, 
namely, the variance and the frequency correlation 
function for the intensity fluctuations of the optical 
sensing beam propagating through the aberration-free 
defocusing lens-Like medium (the refraction channel) 
with either discrete or continuous random inhomogeneities 
of the dielectric permittivity. 

Using the parabolic equation 
 

E(x, q; κ) = 0, (1)

 
 
E(0, q; κ) = E0(q; κ) 

 
for the lens-like medium fthe refraction channel), when 
its optical axis coincides with the OX axis,4 we may 
obtain the equation for the fourth–order coherence 
function of frequency–diversity monochromatic waves, if 
the dielectric permittivity fluctuations in the medium 
ε(x, q; κ) are assumed to be Markovtan4,5,10,11:  
 

 

  

(2)

 
 

where E(x, q; κ) is the parabolic amplitude of the optical 
field at the point (x, q) at the wavelength λ(k = 2π/λ; for 
definiteness, we assume λ2 ≥ λ1). Δ⊥ = ∂2/∂y2 + ∂2/∂z2 is the 
transverse Laplacian operator; F(x,k) is the profile of the 
local focal distance of the lens–like medium for the optical 
wave with the wavelength λ;  ε(x, q; κ) are the dielectric 
permittivity fluctuations in the medium; R1 = (q1 + q2)/2; 
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the momenta <ε(x, q1; κl) ε*(x, q2; κ
l
 ′ )> of the dielectric 

permittivity in the medium and  

< ε(x, q1; κl) ε(x, q2; κ l
 ′ ) > (l, l′ = 1,2). 

We restrict ourselves to the case in which the focal 
distance in such a lens-like medium is independent of the 
wavelength, i.e., F(x,κ1) = F(x,κ2) = F(x). Such a 
restriction is quite acceptable because the estimates show 
that F(x,κ) varies only slightly in gaseous media with the 
wave number κ being outside the absorption lines.4 
According for this and assuming thai the “centered” fourth–
order moment of the field 
 

 
 

is small compared to Γ
(0)

4
 (x, q1, q2, q3, q4; κ1, κ2), i.e., to the 

fourth–order coherence function of the frequency–diversity 
monochromatic waves propagating through a lens–like 
medium without random inhomogeneities, we obtain from Eq. 
(2) the following equation for W(x, q1, q2, q3, q4; κ1, κ2): 
 

 

  

(3)

 
 

where Γ2(õ, q1 q2; κ1) and Γ2(x, q3, q4; κ2) are the second–
order coherence functions for the monochromatic waves 
propagating in the lens–like medium.4–5 Equation (3) can 
be solved by the method of characteristics after the Fourier 
transform over the coordinates R1 and R2. This solution has 
the following form:  
 

 

 

 

where 
 

 
 

The functions U1  and U2  are here the partial 

solutions of the equation  
 

 
 

with the boundary conditions 
 

 
 

is the "initial" value of the focal distance in the lens–like 
medium. 

Let us consider two identical Gaussian beams with 
different carrier frequencies (λ1 ≠ λ2) which propagate along 
the optical axis of the lens–like medium, i.e., 
 

 
 

where E0 is ihe field amplitude at ihe center of the output -
aperture, a0 is ihe initial radius of the oplica[ beam, R0 is 
the wavefront curvature radius of the optical beam at the 
output aperture. In this case it may be assumed that 
 

 (5) 
 

where 
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is the second–order coherence function for the 
monochromatic wave propagating through the lens–like 
medium without random inhomogeneities4–5: 
 

 

 
 

is  the  running  radius  of  the  optical  beam  and 

is ihe running wavefront curvature of 

the optical beam. Substituting Eq. (5) into Eq. (4) for 
R1 = R2 = η1 = η2 = 0 we obtain the intensity fluctuation 
frequency correlation function for the two Gaussian beams at 
the optical  axis  of  the  lens–like  medium.  If   
I(x, q; κ) = E(x, q; κ) E*(x, q; κ) is the optical beam 
intensity then the intensity fluctuation correlation function for 
Ihe frequency–diversity waves has the form 
 

 
 

where 
 

 

 
 

For κ1 = κ2 Eq. (6) describes the variance of the intensity 
fluctuations of the optical beam at the optical axis of the 
lens–like medium 
 

 
 

We shall calculate the variance and the frequency 
correlation function of the intensity for two cases: 

1) continuous medium with the Kolmogorov spectrum 
of the inhomogeneities of the dielectric permittivity12 
 

 
 

where is the structural parameter of the dielectric 
permittivity fluctuations in the medium, κm = 5.92/l0, and 
l0 is the inner scale of the turbulence and 

2) discrete monodispersed scattering medium13,14 

 

 
 

where m0 is the density and a is the radius of the scatterer. 
To start with, we consider the features peculiar to the 

behavior of the variance of Gaussian optical beam intensity 
fluctuations propagating along the optical axis of the lens-
tike medium with continuous inhomogeneities of the 
dieteclrk permittivity (Eq. (7)) in comparing with the 
homogeneous (on the average) medium. Substituting Eq. (7) 
into Eq. (6) and evaluating the integrals, we obtain the 
relation for the absolute variance of the Gaussian beam 
intensity fluctuations 

 

 
 

 
where 
 

 
 

D = xκ
2

m
 /κ. In the case of a wide (κa

2

0
 /x . 1) 

collimaled (R0 = ∞) beam in which 
 

and 

 

we find for the ratio of the 

normalized variances of the intensity fluctuations of optical 
wave propagating through the lens–like medium 

and through the 

homogeneous  eddy medium 

 

the 

following relation: 
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 (10)
 

where 
 

 
 

ξ = x/F0 is the ratio of the path length to the "initial" 
value of the local focal distance in the lens–like medium. 

It follows from Eq. (9) that in the case of 

"quasispherical" wave (κa
2

0
 /x n 1) in  which  

 and 

 

the similar ratio of the 

normalized variances of the intensity fluctuations has the 
following fom: 
 

 

 (11)
 

where 
 

 
 

The analysis of relations (10) and (11) demonstrates that in 

the region of "geometric optics" (D
f

 (ξ, η) n 1 and  

(D
∧

 (ξ, η) . 1) we have 
 

 

 
and 

 

 

Figure 1 shows the results of calculation of the ratios of the 
normalized variances of intensity fluctuations of the wide 
collimaled beam (γp(ξ)) given by Eq. (10) and the 
"quasispherical" wave (γs(ξ)) given by Eq. (11) for different 
values of D and two models of varying the local focal 
distance of the lens–like medium with distance: F(x) = F0 

(solid lines) and F(x) =F0(1 + 
x2

F
2

0

)  (dashed lines). 

 

 
 

FIG. 1. The ratios of the normalized variances of intensity 
fluctuations for optical wave propagating through the lens–
like medium and through the regularly homogeneous medium 
continuous random inhomogeneities for a wide collimated 
beam and the "quasispherical" wave vs ξ:  
1) D ≤ 1, 2) D = 10, and 3) D . 1. 
 

The effect of weakening the intensity fluctuations of 
the optical wave propagating through the lens–like medium 
(produced by beam defocusing) is reduced with increase of 
D. It should be stressed that the results presented here 
reveal the groundlessness of the conclusion made in Ref. 10 
about the possibility of evalualing the effect of defocusing 
in the lens–like medium (the refraction channel) on the 
intensity fluctuations with the help of calculated the 
intensity fluctuations behind a thin lens. Such an 
approximation is possible only for a lens–like medium in 
which the local focal distance increases rapidly along the 

path. e.g., for F(x) = F0 [1 + (x2

F
2

0

) ]. In this case the 

defocusing effect on the optical radiation is produced only 
by a snort initial section of the propagation path, and its 
effect may indeed be approximated by that of a thin lens. If 
the focal distance of the lens–like medium increases slowly 
with x, or remains constant, or even decreases, such an 
approximation of the lens–like medium by a thin lens  
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becomes invalid. The results of calculation of γps(ξ), shown 
in Fig. 2 for D . 1 and various models of the profile of the 
local focal distance F(x) also support this conclusion. The 
value of γps(ξ) was calculated for 

 

 
 

 
 

FIG. 2. The ratios of the normalized variances of intensity 
fluctuations γp(ξ) and γs(ξ) for D . 1 and different models 
of F(x): 

1) U1(ξ) = 1 – ξ2
 , 2) U1(ξ) = (1 + 

2
3ξ2) 

¾, 3) U1(ξ) = ch(ξ), 

4) U1(ξ) = exp(
1
2ξ2) , and 5) U1(ξ) = 1/ 1 – ξ2

  (ξ < 1). 

 
The functions U1(ξ) corresponding to them can be 

found in legends It can be seen from Figs. 1 and 2 that the 
intensity fluctuations decrease more rapidly in a wide 
collimated beam than in a "quasispherical" wave. 

Analysis of the case of the discrete scattering medium 
(Eq. (8)) leads lo the following conclusions. The absolute 
variance of the intensity fluctuations of a wide collimated 

beam for d = L/(κa)2 . 1 decreases by a factor of 1/U
4

1
 (ξ) 

compared to the case of the regularly hemogeneous medium 
(F0 → ∞), and the intensity fluctuations of a 
“quasispherical” wave — by a factor of (ξ/U2(ξ))4. Figure 
3 shows the results of calculations of the attenuation factor 

of intensity fluctuations (β(ξ) = σ
2

I
 (x,0,κ)/ lim

F0 → ∞

 σ
2

I
 (x,0,κ) 

of the wide collimated beam (βp(ξ)) and of the 
“quasispherical” wave (βs(ξ)) propagating through the 
discrete scattering medium with different regularities of 
varying the local focal distances along the path for d . 1. 
The profiles of F(x) used there coincide with those shown 
in Fig. 2. A more rapid decrease of the intensity 
fluctuations of the wide collimated beam than of the 
“quasispherical” wave can be seen again in the discrete 
scattering medium, which is similar lo the case of the 
continuous medium. 
 

 
 
FIG. 3. The dependence of the ratios of the absolute 
variances of the intensity fluctuations βp(ξ) and βs(ξ) in the 
discrete scattering medium on the functional form of the 
profileof F(x): 

1) U1(ξ) = 1 – ξ2
 , 2) U1(ξ) = (1 + 

2
3ξ2) 

¾, 3) U1(ξ) = ch(ξ), 

4) U1(ξ) = exp(
1
2ξ2) , and 5) U1(ξ) = 1/ 1 – ξ2

  (ξ < 1). 

 
In contrast to the variance of the intensity fluctuations 

of the optical beam which propagates through the lens–like 
medium with random inhomogeneities described by Eq. (7),  
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the normalized intensity fluctuation frequency correlation 
function bI(κ1,κ2) = ÂI(κ1,κ2)/[σI(x,0;κ1)σι(õ,0;κ2) appears to 
be practically independent of the refraction properties of the 
medium. Using Eqs. (6) and (7), it may be shown that for 
D(x, ξ) n 1 

 

bI(κ1,κ2) g 1,  (12) 
 

and for D(x, ξ) . 1 and D(x, ξ) Ω . 1 
 

bI(κ1,κ2) g 
1 – Ω5/6

(1 – Ω2)5/6 ,  (13) 

 

where Ω = (κ1 – κ2)/(κ1 + κ2) = (λ2 – λ1)/(λ1 + λ2) is the 
relative wave number difference. 

It is not difficult to find that the obtained results (12) 
and (13) identically coincide with the results for the regularly 
homogeneous medium (F0 → ∞) presented in Ref. 15. 

As for the intensity fluctuation frequency correlation of 
optical wave, which propagates through a lens–like medium 
with discrete scatterers, for the continuous waves 
("quasiplanar" and "quasispherical" waves), for which  
a(x,κ1) g a(x;κ2) g a(x) . 1 and S(x,κ1) g S(x;κ2) g S(x), 
for d . 1 and Ω n  d–1 we have 

 

 (14)
 

 
where 
 

 
 
is the characteristic scale of frequency correlation for a wide 
collimated beam (the "quasiplanar" wave), 
 

 
 

is the same parameter for the "quasispherical" wave, 

where  and  is the wave number 

corresponding to the average wavelength. 
Figure 4 shows the factors of increasing the scale of 

intensity fluctuation frequency correlations in a lens–like 
medium  with  discrete  scatterers  αps(ξ) = Ωavs(ξ)/ lim

F0 → ∞

 (ξ). 

Various profiles of F(ξ) were considered (the used models of 
the focal distance in the lens–like medium were the same as 
the models used to calculate γps(ξ), see Fig. 2). 

Thus, the existence of regular inhomogeneities of 
dielectric pemurtivity in the discrete scattering media 
improved the degree of the intensity fluctuation frequency 
correlations compared to the regularly homogeneous 
medium. Indeed, because of the defocusing properties of the 
lens–like medium, the spatial scale ρc of the shadow pattern 
on the receiver will be larger than the actual size of the 
scatterer (ρc > a). Hence, as demonstrated in Ref. 16. the 
scale of the frequency correlation will also be larger: 

 
Ωc > κρc

2
 /x > κ a2/x (αps(ξ) > 1). 

 
 

FIG. 4. The characteristic scales of the intensity fluctuations 
frequency correlation of the wide collimated beam (αp(ξ)) 
and of the "quasispherical” wave (αs(ξ)) propagating 
through the discrete scattering medium with various profiles 
of F(x):  

1) U1(ξ) =  1 – ξ2 , 2) U1(ξ) = (1 + 
2
3 ξ

2)3/4, 

3) U1(ξ) = ch(ξ), 4) U1(ξ) = exp(
1
2 ξ

2), and 

5) U1(ξ) = 1/  1 – ξ2 (ξ < 1). 
 

The analysis of the intensity fluctuation characteristics 
of the Gaussian beam propagating through the lens-like 
medium demonstrates that the intensity fluctuations of 
optical beam in a lens-like medium are weaker than Ihe 
fluctuations in a regularly homogeneous medium. Moreover, 
these intensity fluctuations decrease the faster, the larger is 
the initial divergence of Ihe optical beam. The intensity 
fluctuation frequency correlation of the optical beam 
propagating through the lens—tike medium with continuous 
random inhomogeneities coincides with that for the 
regularly homogeneous medium, white the existence of the 
regular refraction in homogeneity in the discrete scattering 
medium results in an increase of Ihe scale of the intensity 
fluctuation frequency correlations. 
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