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Replacing integrating over the paths by ordinary integrating over the 
amplitudes of harmonics is proposed. As a result, a relation for the light field, which 
permits one to examine a wide class of problems for both the linear and nonlinear 
randomly inhomogeneous media, has been derived. Based on the proposed formula for 
the light field, a general relation for the spatio-temporal correlation function of 
arbitrary intensity fluctuations in a turbulent atmosphere has been derived.  

 
In a linear random medium with large–scale dielectric 

constant inhomogeneities (in comparison with the wavelength) 
the propagation of an optical wave is described by the linear 
stochastic parabolic differential equation. It is well known 
that the solution of the linear parabolic equation can be 

represented in the form of a continuous integral.1-4 The 
possibility of using it was illustrated in Refs. 5–9 by 
considering, by way of example, the calculation of the wave 
parameters for strong and weak intensity fluctuations in a 
turbulent atmosphere.  
 

In order to describe the nonlinear interaction of a 
laser beam with random medium, the continuous integral 
can be used based on the notion of the  
T–transform.10 The T–transform assumes an account of 
the time delay effect (or relaxation) for the quantities, 
which depend on an unknown function. In order to 
interpret the T–transform one can use the nonlinear 
differential equation, which describes the propagation of  
an optical wave  
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where k = 2π/λ is the wave number, λ is the wavelength of 
laser beam, and x, y, and z are the Cartesian coordinates; the 
laser beam propagates along the x coordinate, p = i y + j z is 
the vector in a plane transverse to the direction of 

propagation, t is time, u(x, y, z, t) = ε–ikx
⋅Ec(x, y, z, t), 

Ec(x, y, z, t) is the slowly varying complex amplitude of the 

wave field, Δ
⊥
 = 

δ2

δy2+ 
δ2

δz2
 is the transverse Laplacian, 

εd(x, y, z, t) is the deviation of the dielectric constant of the 

medium from its mean value, ε0(x, y, z, t) is the imaginary 

part of the dielectric constant of the medium, which describes 
the absorption of laser beam, T(x, y, z, t) is the mean 
temperature of the medium before its heating by the laser 
beam, Tr (x, y, z, t) is the deviation of temperature from 

T(x, y, z, t) caused by the randomly inhomogeneous character 
of the medium, Th(x, y, z, t) is the deviation of temperature 

from T(x, y, z, t) caused by heating the medium by the laser 
beam. Th is the functional of the function u(x, y, z, t) we are 

interested in, i.e., Th(x, y, z, t) = F[u(x, y, z, t)]. The 

functional F describes the nonlinear interaction of the laser 
beam with the medium.  

 

It is clear from the physical considerations that the 
change in the temperature of the medium Th(x, y, z, t) 

occurs during time interval T. Therefore, we can consider 
that Th(x, y, z, t) depends on the values of the unknown 

function until some preceding moment in time t – T. 
Because of the small value of T, this dependence was 
usually ignored. However, when constructing the difference 
scheme of solving the similar equations,11 the time delay 
is essentially taken into account, since in order to 
calculate Th(x, y, z, t) at time t2, the values  

of u(x, y, z, t) at the preceding time moment t1 were 

used. In this respect, the notion of the T–transform 
introduced by V.P. Maslov10 is closer to the real  
physical process than Eq. (1). As shown in Ref. 10,  
the method of the T–transform is closely related to the 
notion of nonlinear continuous integral, which can be 
interpreted as the method of constructing the solution  
by time steps. Making use of the notion of the  
T–transform introduced by V.P. Maslov, the  
nonlinear differential equation (1) can be represented in 
the form of a continuous integral 
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where 
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k
2πi ,  Th(ξ, p(ξ), t) = Fh[u(ξ, p(ξ), t – T)] . 

 
Now, there are no methods for calculating the 

continuous integrals with the exception of the case, in 
which the integral of action (in Eq. (2) this is the integral 
under the exponent) has a quadratic dependence. But when 
describing both linear and nonlinear effects the integral of 
action, as a rule, cannot be represented in such a form. In 
this connection, a necessity of employing the approximate 
methods for the calculations arises. In particular, the 
approximations taking into account solely a single path, 
which makes the main contribution to the continuous 
integral, can be developed. In Ref. 12, it was proposed to 
choose the straight lines, which join two end points, as  

such a path. In order to determine the main path, one can 
employ Euler's equation which has a solution under 
conditions of essential approximations and limitations.13  

In this paper, we propose to take into account any 
paths with the help of their representation in the form of a 
superposition of a certain arbitrary oriented straight line 
and a collection of different harmonics. In so doing, 
integrating over the paths is replaced by ordinary 
integration over the amplitudes of harmonics.  

It is well known2,10 that integration over the paths in 
Eq. (2) is analogous to taking the limit  
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where p
N
 = p and Δx = x/N.  

 
Formulas (2) and (3) mean that u(x, p, t) is determined as 
a sum (integral) over the paths, which arbitrarily join all 
points of the source to the point p located at the end of the 
path. The contributions of different paths to the sum can be 
arbitrary including the case, in which they are opposite to 
each other. In order to perform a convenient analysis of the 
contribution of different paths to the sum, let us represent 
the path in the following way: 
 
p(ξ) = ps(ξ) + pd(ξ) , (4) 

 
where ps(ξ) = (1 – ξ/x) p0 + ξ/x p is the straight line, 

which joins the end points p0 and p, pd(ξ) is the path, 

which has the property pd(0) = pd(x) = 0. According to 

Steklov's theorem,14 the path pd(χ) can be expanded into a 

series  
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where the functions ϕl(ξ) = 2/x sin(lπξ/x) are used as an 

orthonormal system of functions. The values  
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pd(ξ) = ∑
l=1

N-1
 al ϕl(ξ) + ∑

l=N

∞

 al ϕl(ξ)  (5′) 

 

and neglect the last sum, whose contribution decreases as N 
increases, we can convert from the variables of integration 
pj in Eq. (3) to new variables of integration al  
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In addition, in order to obtain a convenient representation 
of Eq. (3), we carry out the following change of variables: 
 

al = 
x
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 bl . 

 

In this case, the Jacobian of the transform from the variables 

of integrating pj to bl is N
–N, while the summation over j can 

be replaced by integration over the path. Hence, the 
expression for the light field assumes the form  
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where νi(x′) = sin(lπx′/x)/ 2N sin(lπ/2N)).  
 

Since the scales of variation of the values εd, T and ε0, 

as a rule, exceed the dimensions of the laser beams, and εd,  

T and ε0 are stationary within the time over which  

the pulse acts, the dependence of these values on  
the transverse coordinates and time can be ignored. In 
this case, 
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where α(x′) = kε0(x′) is the molecular absorption coefficient and ε2(x′) = –εd(x′)/T(x′). In the wavelength range λ = 0.2 – 20 μm 

we can use the following approximate formula15: εd(x′) = 2⋅10–6P(x′)
I(x′)

 (77.6 + 0.584λ–2). Under standard conditions 

P(x′) = 1013.25 mbar, T(x′) = 288 K,  

ε2 = 
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–1.89⋅10–6 
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K for λ = 20 mm

   

 

Usually ε2 is assumed to be equal to –2⋅10–6 1/K. The value 
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describes the dielectric constant fluctuations in the medium due to its random inhomogeneity. If we neglect in Eq. (7) the 
integration over the amplitudes of the harmonics bl then we obtain the expression  
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which agrees with the previously well–known formula of 
the light field in the phase approximation of the Huygens–
Kirchhoff method.16 It is clear from the physical 
considerations that the first low–frequency harmonics make 
the main contribution to integral (7). For this reason, on 
the one hand, we can use a small number of harmonics for 
the calculations and, on the other, we can determine the 
accuracy of the accepted restrictions.  

Formula (7) for the field of laser beam in the case of 
linear (Th = 0) and nonlinear interactions with both 

stationary and moving randomly inhomogeneous media  

makes it possible to investigate a wide class of problems for 
the one–way and round–trip paths.  

A possibility of employing Eq. (7) can be 
demonstrated by considering, by way of example, a 
derivation of relations for the spatio–temporal correlation 
function of the intensity fluctuations BI in a turbulent 

atmosphere for Th = 0  
 

BI(x, p1, p2, τ) = <I(x, p1, t)> – <I(x, p2, t + τ)> –  
 

– <I(x, p1, t)> <I(x, p2, t + τ)> , (9) 
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where I(x, p, t) = u(x, p, t)u*(x, p, t) is the intensity of 
laser beam and the angular brackets <...> denote the statistical 
averaging over the ensemble of realizations of the dielectric 
constant of the medium ε1. Hereafter, we shall use the  

Gaussian distribution law and the assumption of δ–correlate 
fluctuations ε1 as well as condition that the turbulence be 

"frozen".17 In this case, with account of Eq. (7), we can write 
down the following general relation  
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v(x′) is the vector of wind velocity. As a rule, the 
analyses of the fluctuation characteristics given by 
Eq. (8) for different values of p1, p2, and τ are performed 

for weak (β0
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 < 1) and strong (β0

2
 . 1) intensity 

fluctuations. Here, β0
2
 = 0.31C

ε

2
k7/6x11/6 is the effective 

parameter, which determines the intensity of turbulence  

on the path. C
ε

2
 is the structural parameter of the dielectric 

constant fluctuations. Since fluctuation H is proportional to 

the parameter β0
2
, the second exponent in Eq. (15) for β0

2
 < 1 

can be represented in the form ex ≈ 1 + x. In this case, we 
succeed in integrating over the variables bl and Bl and in 

determining the limiting value  
 

 

f (R2, R3, R4, x, p1, p2, τ) ≈ 1 – 
πk2

2  
⌡
⌠

0

x

dx′
 

 ⌡
⌠

–∞

∞

d2
 

 

k
 
Φ
ε
(k) ⎣

⎡
⎦
⎤2 – exp

⎩
⎨
⎧

⎭
⎬
⎫

i( )1 – 
x′

x k (R3 + R4)  – exp
⎩
⎨
⎧

⎭
⎬
⎫

i( )1 – 
x′

x k(R3 – R4)  – 

 

– exp
⎩
⎨
⎧

⎭
⎬
⎫

ik
⎣
⎡

⎦
⎤( )1 – 

x′

x (R2 + R4) + 
x′

x (p1 – p2) + v(x′) τ –exp
⎩
⎨
⎧

⎭
⎬
⎫

ik
⎣
⎡

⎦
⎤( )1 – 

x′

x (R2 – R4) + 
x′

x  (p1 – p2) + v(x′) τ + 

 

+ exp
⎩
⎨
⎧

⎭
⎬
⎫

–i 
x′

k( )1 – 
x′

x k2 + ik
⎣
⎡

⎦
⎤( )1 – 

x′

x (R2 + R3) + 
x′

x  (p1 – p2) + v(x′) τ + exp
⎩
⎨
⎧
i 
x′

k( )1 – 
x′

x k2+ 

 

+ ik
⎣
⎡

⎦
⎤( )1 – 

x′

x (R2 + R3) + 
x′

x  (p1 – p2) + v(x′) τ  .  (16) 

 

For strong intensity fluctuations (β0
2
 . 1), one can use an asymptotic expansion described in Refs. 5 and 6 which allows one 

to carry out the integration over bl and Bl in Eq. (15) and to find the limit 

 

f(R2, R3, R4, x, p1, p2, τ) ≈ exp

⎩
⎨
⎧ 

–

 

πk2

4 ⌡⌠
0

x

dx′
 

 
  ⎣
⎡H⎝
⎛

⎠
⎞( )1 – 

x′

x (R2 + R4) + 
x′

x  (p1 – p2) + v(x′) τ + 

 

+ H ⎦
⎤

⎝
⎛

⎠
⎞( )1 – 

x′

x (R2 – R4) + 
x′

x  (p1 – p2) + v(x′) τ  

⎭
⎬
⎫  

+

 

 πk2 ⌡⌠
0

x

dx′
 

 
 
⌡⌠

–∞

∞

d2

 
k

 
Φ

ε
(x′′, k) exp

⎩
⎨
⎧

⎭
⎬
⎫

ik( )1 – 
x′′

x R3 ×  

 

×
⎣
⎡cos⎝

⎛
⎠
⎞( )1 – 

x′′

x kR4 – cos⎣
⎡k⎣
⎡( )1 – 

x′′

x R2 ⎦
⎤
⎦
⎤+ 

x′′

x  (p1 – p2) – 
x′′

k( )1 – 
x′′

x k + v(x′′) τ  ⎦
⎤ 

×
 
 

 

× exp

⎩
⎨
⎧ 

–

 

πk2

4 ⌡⌠
0

x

dx′
 

 
 ⎣
⎡H⎝
⎛( )1 – 

x′

x (R2 + R4) ⎠
⎞+ 

x′

x  (p1 – p2) – 
x′

k( )1 – 
x′′

x k + v(x′) τ + H⎝
⎛( )1 – 

x′

x × 

 

⎦
⎤
⎠
⎞× (R2 – R4)+ 

x′

x  (p1 – p2) – 
x′

k( )1 – 
x′′

x k + v(x′) τ  ⌡⌠

x′′

x

dx′
 

 

⎣
⎡H
⎝
⎛( )1 – 

x′

x (R2 + R4) + 
x′

x  + (p1 – p2) –  
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⎠
⎞– 

x′′

k( )1 – 
x′′

x k + v(x′) τ + H⎝
⎛( )1 – 

x′

x (R2 – R4) + 
x′

x  (p1 – p2) – 
x′′

k( )1 – 
x′

x k + v(x′) τ
⎠⎟
⎞ 

 ⎦⎥
⎤ 

 ⎭
⎬
⎫ 

 

 + 

 

+ exp

⎩
⎨
⎧ 

–

 

πk2

4 ⌡⌠
0

x

dx′
 

 
 ⎣
⎡H
⎝
⎛

⎠
⎞( )1 – 

x′

x (R3 + R4) ⎦
⎤+ H

⎝
⎛

⎠
⎞( )1 – 

x′

x (R3 – R4)
⎭
⎬
⎫  

+

 

πk2
⌡⌠
0

x

 dx′′
 

 
⌡⌠
–∞

∞

 d2

 
k

 
Φ

ε
(x′′, k) ×  

 

× exp

⎩
⎨
⎧  

ik

 
⎣
⎡

⎦
⎤( )1 – 

x′′

x R2 + 
x′′

x  (p1 – p2) + v(x′′) τ

⎭
⎬
⎫ 

 

 
⎣
⎡cos⎝

⎛
⎠
⎞( )1 – 

x′′

x kR4  – cos⎝
⎛

⎠
⎞k⎣

⎡
⎦
⎤( )1 – 

x′′ 
x R3 – 

x′′

k( )1 – 
x′′

k k ⎦
⎤ 

×
 
 

 

× exp

⎩
⎨
⎧ 

–

 

πk2

4 ⌡⌠
0

x

dx′
 

 
 ⎣
⎡H⎝
⎛( )1 – 

x′

x (R3 + R4) ⎠
⎞– 

x′

k( )1 – 
x′′

x k  +H⎝
⎛( )1 – 

x′

x (R3 – R4) ⎦
⎤
⎠
⎞– 

x′

k( )1 – 
x′′

x k  + 

 

+ ⌡⌠

x′′

x

dx′
 

 

⎣
⎡H
⎝
⎛( )1 – 

x′

x (R3 + R4) ⎠
⎞– 

x′′

k( )1 – 
x′

x k +H
⎝
⎛( )1 – 

x′

x (R3 – R4) – 
x′′

k( )1 – 
x′

x k
⎠⎟
⎞ 

 ⎦⎥
⎤ 

 ⎦⎥
⎤ 

 ⎭
⎬
⎫
 

 

.

 

 (17) 

 
 
The phase approximation of the Huygens–Kirchhoff 
method does not describe the intensity fluctuations of the 
spherical wave and of an incoherent source. For the 
above–derived relations, the similar limitations are 
absent. As an example, we can obtain the relative 
variance of the intensity fluctuations of the spherical 

wave σ
I

2
 = BI(x, 0, 0, 0)/<I((x, 0, t)>2. For calculations, 

let us use the Kolmogorov spectrum of the dielectric 

constant fluctuations, namely, Φ
ε
(κ) = 0.033C

ε

2
x–11/3. 

For the spherical wave u0(p, t) = u0

2π

k2σ(p), and 

<I(x, 0, t)> = (u0/kx)2. Using Eqs. (9), (11), (13), and 

(16) for weak intensity fluctuations (β0
2
 < 1) we obtain  

 

σ2
I = 0.4β2

0 + 0(β4
0) ,  (18) 

 

and for strong intensity fluctuations (β0
2
 . 1) (formulas (9), 

(11), (13), and (17) are used), we obtain  
 

σ2
I = 1 + 2.73β–4/5

0  + 0(β–8/5
0 ) .  (19) 

 

The derived formulas (18) and (19) coincide with the 
previously well–known results.6,17  
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