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New method for the analytic solution of the transfer equation of the optical radiation in 
a stochastic scattering medium is developed in linear and quadratic approximations.  

 

At present the model of a three–dimensional 
inhomogeneous scattering layer is known to be the most 
adequate model of the atmosphere. This model makes it 
possible to describe spatial inhomogeneity of atmospheric 
aerosol and stochastic structure of fogs and continuous 
cloudiness as well as the presence of cumulus clouds in the 
atmosphere. The theory of wave propagation in such media is 
being increasingly developed only in recent years. The Monte 
Carlo method is the most advanced numerical method for 
solving this problem.1,2 As for the analytical methods, only 
the methods which are based on the perturbation theory and 
the small–angle approximation of the radiative transfer 
equation3-8 have been developed. The methods of the 
perturbation theory3-5 and the small–angle approximation6,7 
are applicable only for calculating light fields in stochastic 
media under conditions of weak small–scale fluctuations in 
the scattering indices. The method described in Ref. 8 despite 
its much wider field of application, has also some restrictions. 
The present paper describes the more general method (in 
comparison with the method described in Refs. 3–8) for the 
analytical solution of the radiative transfer equation in 
stochastic media which is based on a new approach to the 
perturbation theory for solving the stochastic radiative 
transfer equation.  

We assume that a random field of the index of 
attenuation of optical radiation ε(r) and differential index of 
light scattering σ(r, γ) at an angle γ is realized in a scattering 
layer. Here r is the radius vector of a point belonging to the 
layer. This layer is illuminated from above by radiation 
producing the brightness B0(ρ, Ω t) on the upper plane 

boundary of the layer at time t, where ρ is the radius vector 
of a point belonging to the boundary, Ω is the unit vector 
specifying the direction of observation of the brightness. The 
light field within the layer satisfies the stochastic radiative 
transfer equation  
 

[ ] 
 

1
c 

∂

∂t + Ω⋅∇ + ε(r)  I(r; Ω; t) = ⌡⌠
4π

σ(r; Ω.Ω′)I(r; Ω′; t) dΩ′, (1) 

 
where c is the velocity of light in the medium, ∇ is the gradient 
operator, I(r, Ω, t ) is the radiation brightness at the point r of 
the medium in the direction Ω at time t. Let us denote the 
projection r onto the upper plane boundary of the layer by ρ and 
the length of the projection r onto the Z axis of the system of 
Cartesian coordinates which is directed downwards by z. The 
boundary conditions for Eq. (1) have the form  
 
I(ρ; z = 0; Ω ; t) = B0(ρ; Ω ; t) for μ > 0 ,  

 
I(ρ; z = H; Ω ; t) = 0 for μ < 0 ,  
 

where μ is the direction cosine of the vector Ω with respect to 
the Z axis and H is the thickness of the layer. Because of 
linearity of the radiative transfer equation (1) the brightness 
I (r, Ω; t ) is related to B0(ρ, Ω, t ) via the linear functional  
 

I(r; Ω; t) = ⌡⌠
0

t

 dt′⌡⌠ dρ′⌡⌠ dΩ′B0(ρ′; Ω′; t′) × 

× G(r; ρ′; Ω; Ω′; t; t′) , (2) 
 
where G (⋅) is the stochastic Green's function of Eq. (1). It is 
clear from Eq. (2) that for calculating the light fields 
produced by the arbitrary sources in the medium it is 
sufficient to know only the Green's function of Eq. (1). It is 
obvious that this function satisfies Eq. (1) with the boundary 
conditions 
 

G(ρ; z = 0, ρ′; Ω; Ω′; t; t′) = 
 
 

= δ(ρ – ρ′)δ(Ω – Ω′)δ(t – t′)   for μ > 0 ,  
 

G0(ρ; z = H; ρ′; Ω; Ω′; t; t′) = 0  for μ < 0 , (3) 
 

where δ(⋅) is the delta function of Dirac. It can be easy seen 
that for the unscattered light  
 

G0(r; ρ′; Ω; Ω′; t; t') = exp

⎣
⎢
⎢
⎡

⎦
⎥
⎥
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– 
⌡
⌠

0

z

ε(ρ′ – au; u)
du
μ1

 × 

 

× δ(ρ – ρ′ – az) δ(Ω – Ω′) δ(t – t′– z/μ1c) , (4) 

 
where μ1 is the direction cosine of the vector Ω′ with respect 

to the Z axis, α = Ω′
⊥
/μ1 and Ω′

⊥
 is the projection of Ω′ onto 

the upper boundary of the layer.  
Let the Green's function G (⋅) be represented in the form 

of a sum of the Green's functions for the unscattered light 
G0(⋅) and for the light multiply scattered in the medium G*(⋅) 

 
G(⋅) = G0(⋅) + G*(⋅) . (5) 

 
The function G*(⋅) satisfies the equation  
 
LG* = Q , (6) 
 
where the operator  
 

L = 
1
c 

∂

∂t + Ω⋅∇ + ε(r) – ⌡⌠
4π

dΩ′ σ(r; Ω⋅Ω′)(⋅) ,  
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Q = σ(r; Ω⋅Ω′) exp

⎣
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– 
⌡
⌠

0

z

ε(ρ′ – au; u)
du
μ1

 ×  

× d(ρ – ρ′ – az) δ(t – t′ – z/μ1c) . (7) 

 
The operator L and the function Q can be represented by a sum 
of deterministic (L0 and Q0) and random (V and F) components  

 
L = L0 + V ,  Q = Q0 + F ,   

 
where 
 

L0 = 
1
c 

∂

∂t + Ω⋅∇ + <ε>–⌡⌠
4π

dΩ′ <σ(Ω⋅Ω′)>(⋅) ,  

 

V = ε
∼
(r) – ⌡⌠

4π

dΩ′ σ
∼
(r; Ω⋅Ω′)(⋅) , (8) 

 

<ε> and <σ(Ω⋅Ω′)> and ε
∼
(r), and σ

∼
(r; Ω⋅Ω′) are deterministic 

and random components of the attenuation index and 
differential light scattering index and the angular brackets 
denote mathematical averaging,  
 

z

0

1
0
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δ(ρ – ρ′ – az) d(t – t′ – z/μ1c) , (9) 

 
Likewise, we shall seek the Green's function in the form of 

superpositions of the deterministic G*
0
(⋅) and random G

~
*(⋅) terms  

 

G*(⋅) = G0*(⋅) + G*(⋅) . (10) 
 

Equation (6) can be easy reduced to an equivalent system 
of two equations  
 

L0G0* = Q0 – <VG*
~

>, L0G*
~

 = F + <VG*
~
> – VG0* – VG

~
*. (11) 

 
Let us now examine the structure of the second equation 

of system (11). The right side of this equation can be 
rewritten in the form Q – <Q> + <VG> – VG. It is evident 
that the difference Q – <Q> describes fluctuations in the 
single scattered light and the difference <VG> – VG describes 
fluctuations in the multiply scattered light. The amplitude of 
these fluctuations can be easy estimated. The maximum value 
of Q is attained when the directly passing light arrive at the 
point {ρ; z } without propagating through inhomogeneous 
media. The value of Q in this case is of the order of 
magnitude of σ(r; Ω⋅Ω′), the mean value of Q is of the order 
of magnitude σ(r; Ω′Ω′)(1 – p0), where p0 is the absolute 

probability of the cloud presence. Thus, the amplitude of 
fluctuations of the term Q – <Q> is equal to σ(r; Ω⋅Ω′).  

As a rule, the scattering phase functions of natural 
media, i.e., the atmosphere and ocean, are strongly 
anisotropic. In this case the angular diagram of the function 
G (⋅) is much wider than that of σ(Ω⋅Ω') and, therefore,  
 

VG(⋅) g κ*
~

(r)G(⋅) , 
 

where κ
∼
* is a random part of the effective index of light 

absorption by the medium.9 Since the value κ* n σ(r; Ω⋅Ω′), 
it is obvious that in the right side of the second equation of 
system (11) the main contribution comes from the term F and, 
therefore, the operator V can be assumed to be small and the 
methods of perturbation theory can be used for solving this 
system of equations.  

One of the key features of this approach should be noted. 
As is well known, the methods of perturbation theory are 
applicable only in the case in which a perturbing operator of 
the equation under study is small. In the conventional 
approaches3–5 the operator which describes random 
fluctuations in the parameters of the medium is chosen for a 
small perturbing operator. For this reason, such approaches 
cannot be employed in principle in the case of strong 
fluctuations in the medium. In the given approach the 
operator which describes the effect of fluctuations in multiply 
scattered light in comparison with fluctuations in singly 
scattered light in system (11) is assumed to be small. Since 
this relation holds for both cases of weak and strong 
fluctuations, the approach we treat in this paper can be 
successfully used to describe wave propagation in the media in 
the case of strong fluctuations in scattering parameters as well.  

Let us introduce an auxiliary parameter s, rewrite 
Eqs. (11) in the form  
 

L0G*0) = Q0 – s<VG
~
*> , 

 

L0G
~
* = F + s<VG

~
*> – sVG0* – sVG

~
* , (12) 

 

and seek the function G
~
*(⋅) in the form of a series expansion 

in terms of powers of the parameter s  
 

G
~
*(⋅) = ∑

κ = 0

κ0

G
~
*k (⋅) s

κ . (13) 

 
When κ0 = 0, instead of system (12), we have two 

independent equations for G*0(⋅) and G
~
*0(⋅):  

 

L0G*0 = Q0 – <VL
–1
0 F> , L0G

~
0* = F , (14) 

 

where L
–1
0  is the operator inverse of L0. When κ = 1, 

system (12) is reduced to three independent equations for G*0, 

G
~
*0, and G

~
*1:  

 

(L0 – <V L
–1
0  V>) G0* = Q0 –<VL

–1
0 F> – <VL

–1
0 <VL

–1
0 F>> , 

 

L0G0*
~

 = F , (15) 
 

L0G1*
~

 = <VL
–1
0 F> – VG0* – VL

–1
0  F . 

 

Similar equations can be written for arbitrary κ0. As can be seen 

from Eqs. (12), in calculating the mean value when κ0 = 0, the 

terms linear in s are taken into account, and when κ0 = 1, the 

quadratic terms are considered. For this reason the solutions of 
Eqs. (14) is called below the solutions of the radiative transfer 
equation in linear approximation while the solution of Eqs. (15)  
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– the solutions in quadratic approximation. The field of 
application of these equation is much wider than that of the 
method proposed in Ref. 8, since no restrictions are imposed on 
the relation between the horizontal scales of inhomogeneities and 
the width of the Green's function. The terms involving the 
operator V which enter into the equations for G*0(⋅) describe 

radiative interaction of inhomogeneities, e.g., clouds. The only 
restriction imposed on Eqs. (14) and (15) is the requirement of 
weak fluctuations in multiply scattered light in comparison with 
fluctuations in singly scattered radiation. It is important to note 

that in linear approximation the equations for G*0 and G
~
*0 are 

similar to the radiative transfer equation in the deterministic 
media illuminated by the sources with random brightness 
distribution. This fact enables one to use a large number of 
analytical methods for solving the radiative transfer equation in 
order to find the mean values and second moments of brightness.  

As an illustration of the efficiency of the approach under 
discussion we find the mean brightness produced in a stochastic 
layer by an infinitely extended unidirectional stationary source. 
To solve the problem, we shall use a small–angle approximation 
of the radiative transfer equation which is valid for media with 
strongly anisotropic scattering phase function. Neglecting small 
terms of the order of s in the right side of Eqs. (14) and (15), 
which describe radiative interaction of inhomogeneities, for the 
mean values of brightness B0(z; Ω) we have in linear 

approximation:  
 

μ0 

dB0

dz  + <ε>B0 = 

<σ*>

4π
 ⌡⌠
4π

 i0(Ω⊥– Ω⊥′ B0(Ω′)d Ω′) + Q0(z; Ω), (16) 

 

where μ0 is the direction cosine of the unit vector Ω0 with 

respect to the Z axis which specifies the direction of 
illumination of the medium, <σ*> is the mean value of the 
effective scattering index,9 and i0(γ) is the scattering phase 

function of the medium.  
To write the radiative transfer equation in quadratic 

approximation, we first of all find the result of action of the 

operator <VL
–1
0 V> on the function B0(⋅). Let the volume 

Green's function of the deterministic radiative transfer 
equation, found in small–angle approximation, be denoted by 

Γ0(ρ – ρ′; Ω⊥ – Ω′
⊥
; z; z′). Then  

 

L
–1
0 V B0(⋅) = ⌡⌠ dr′κ

~
*(r′) ⌡⌠

4π

 dΩ′ B0(Ω′)Γ0(ρ – ρ′; Ω⊥ – Ω⊥′; z; z'), 

 (17) 
 

<VL
–1
0 V >B0(⋅) = ⌡⌠ dr′R

κκ
(r; r′) ⌡⌠

4′

 dΩ′ B0(Ω′) × 

 

× Γ0(ρ – ρ′; Ω⊥ – Ω⊥′; z; z′) ,  
 

where R
κκ

(r; r′) = <κ
~
*(r)κ

~
*(r′)> is the correlation function of 

the effective absorption index. In what follows, a random 
field is assumed to be horizontally homogeneous, and 
R

κκ
(r; r′) = R

κκ
(ρ – ρ′; z, z′).  

On the basis of Eqs. (15) and (17) and neglecting 
unimportant terms in the right side of Eq. (15) we obtain for 
B0(⋅)  
 

μ0 
dB0

dz  – ⌡⌠ dr′R
κκ

(ρ – ρ′; z; z′) ⌡⌠
4π

 dΩ′ × 

 

× B0(Ω′) Γ0(ρ – ρ′; Ω⊥ – Ω⊥′; z; z') + <ε> B0 = 
 

= 
<σ*>

4π
 ⌡⌠
4π

 i0(Ω⊥ – Ω⊥′B0(Ω′)dΩ′) + Q0(z; Ω′) . (18) 

 

We now introduce the Fourier transform of the function B0(Ω)  
 

B
∧

0(p) = ⌡⌠ dΩ⊥B0(Ω) e–ip⋅Ω⊥ . (19) 

 

The equation for B
∧

0(p) follows from Eq. (18) 
 

μ0 
dB

∧

0

dz  + [<ε> – <σ*>F(p)] B
∧

0 – 

 

– ⌡⌠
0

z

dz'B
^

0(z') L(z; z') = Q
^

0(z; p) , (20) 

 

where Q
∧

0(z, p) is the Fourier transform of the function 

Q0(z; Ω);  
 

L(z; z′) = ⌡⌠ 
dω

4π2 Γ
∧

0(ω; p; z; z′) S
∧

κ
(–ω; z; z′) , (21) 

 

Γ0(ω; ρ; z; z′) is the spatial–angular spectrum of the Green's 

function of the deterministic radiative transfer equation;  
 

S
∧

κ
(ω; z; z′) = ⌡⌠dω R

κκ
(ω; z; z′) e-iω⋅ξ (22) 

 

is the power spectrum of fluctuations in the effective 
absorption index;  
 

F(p) = 
1
2 ⌡⌠

0

π/2

 γ i0(γ) J0 (pγ) dγ , (23) 

 

where J0(x) is the zero order Bessel function of the first kind. 

According to Refs. 9 and 10, we have  
 

Γ
∧

0(ω; p; z; z′) = exp
⎩
⎨
⎧

⎭
⎬
⎫ 

 
– [<ε> – <σ*>F(p)] (z – z')

μ0
 . (24) 

 

Similarly, we can write the Fourier transform of Eq. (19) in 
linear approximation  

 

μ0 
dB

∧

0

dz  + [<ε> – <σ*>F(p)] B
∧

0 = Q
∧

0(z; p) , (25) 

 

It can be seen from comparison of Eqs. (20) and (25) that the 

linear approximation can be used for <κ*> > σ
2
κ
 l⎢⎢ here l⎢⎢ is 

the longitudinal scale of inhomogeneities and σ
2
κ
 is the 

variance of κ*(r). Equation (25) can be easy solved  
 

B
∧

0 = ⌡⌠
o

z

Q
∧

0(ω; p) exp[–κ(p)(z – ω)] dω , (26) 
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where k(p) = <ε> – <σ*>F(p). We failed to obtain rigorous 
solution of Eq. (20) in explicit form. For this reason, we 
present here several approximate solutions of this equation. To 
describe wave propagation in the case of small–scale 
fluctuations in the parameters of the medium along the Z axis 
with a longitudinal scale l⎢⎢ n H, the model of the δ–

correlated random process can be employed. Within the scope 
of this model  
 

R
κκ

(ξ; z; z′) = R
κκ

*(ξ; z;) δ(z – z′) , (27) 
 

where 
 

R
κκ
*(ξ; z;) = ⌡⌠

0

z

 R
κκ

(ξ; z;) z′ dz′ . 

 

It can easy be seen that for model (27), B
∧

0 is also described 

by the relation similar to Eq. (26) in which κ(p) must be 
replaced by the parameter  

 

κ′(p) = κ(p) – R
κκ
* (0; z) . (28) 

 

We now obtain an approximate solution of Eq. (20) in 

another limiting case in which l⎢⎢ 
>
∼
 H. Here the dependence of 

the function L(z, z′), entering into Eq. (20), on the variable z 
may be assumed to be weak. Introducing the notations  

 

Ψ = ⌡⌠
0

z

 dz′B
∧

0(z′) L(z; z′) , 

 

we can write instead of Eq. (20), an equivalent system of 
equations  
 

μ0 
dB

∧

0

dz  + κ(p)B
∧

0 – Ψ = Q
∧

0(z; p) , 

 

dΨ

dz  = B
∧

0 L(z; z) + ⌡
⌠

0

z

dz′B
∧

0(z′) 
dL(z; z′)

dz  .  

 

In the last equation the term containing a derivative can be 
assumed to be negligible. In this case instead of the integro–
differential equation (20), the second–order differential 
equation can be written:  
 

μ0 
d2B

∧

0

dz2  + κ(p)
dB

∧

0

dz  – L(z; z) B
∧

0 = 
dQ

∧

0

dz (z; p) ,  

 

which, in some cases, can be solved rigorously. In particular, 
for a random process κ*(r) stationary in z we have  
 

B
∧

0 = C1 exp⎝
⎛

⎠
⎞ 

 
–

κ(p) – l

2 z  + 

 

+ C2 exp( ) 
 
–
κ(p)+l

2 z  + 
2
l × 

 

× 
⌡
⌠

0

z

dQ
∧

0(t) exp( ) 
 

l
2 κ(p)(t – z)  sh 

l
2(z – t) , (29) 

 

where the constants C1 and C2 can be found from the conditions 

B
∧

0 = 0 for z = 0 and B
∧

0 → 0 as z → ∞ and l = (κ
2
p + 4σ

2
κ
)1/2.  

The angular structure of the light field can be determined 
by using the inverse Fourier transform. The illumination in the 

medium E = μ0B
∧

0(0) and the coefficient of diffuse transmission 

of the scattered radiation T = B
∧

0(0) can be found based on 

Eqs. (26) and (29) in a rather a simple way.  
We may write, by way of example, the relation for the 

diffuse transmittance for the model of a cloud layer described in 
Refs. 1 and 11. Within the scope of this model  
 

Q
∧

0(z; 0) = ∑
j = 1

0

 Dj p0σ0 exp(–λfz/μ0) , (30) 

 

where 
 

D1 = 
Λ2 – σ0

Λ2 – Λ1
 , D2 = 

σ0 – Λ1

Λ2 – Λ1
 ,  

 

Λ1,2 = 
1
2(σ0 + A ± (σ0 + A)2 – 4Ap0σ0 ) ,  

 

A = A
*
sinϑ0(sinϕ0 + cosϕ0) ,  

 

A
–1

*  is the characteristic scale inhomogeneities of a cloudy 

medium, σ0 is the scattering index of a cloud, p0 is the 

absolute probability of the cloud presence, ϑ0 and ϕ0 are the 

polar and azimuthal angles of illumination. For model (30) 
the solution of Eq. (29) has the form  
 

T = ∑
j = 1

2

 
4Λj Dj p0σ0

(κ0* – 2Λj)2 – l2
 × 

 

× 
⎣
⎡

⎦
⎤ 

 
exp

⎝
⎛

⎠
⎞ 

 
–
κ0* + l

2μ0
H  – exp(–

Λj

μ0
 H)  , (31) 

 

where κ*0 = p0σ0Φ and Φ is the fraction of the backscattered 

light in the singly scattered light.  
 

 
FIG. 1. Different methods for calculations of the transmittance 
coefficient T: a) for A = 1.65 (p0 – 0.5)2 + 1.04/D, where D is 

the specific size of a cloud, σ0H = 5.0, θ0 = 60°, ϕ0 = 0 (1), 

σ0H = 30, θ0 = ϕ0 = 0 (2), θ0 = 60°, ϕ0 = 0 (3);  

b) for A* = (2.32p
2
0 – 0.92 p0 + 1.69)/D, θ0 = 30°, ϕ0 = 45°, 

σ0H = 15, H/D = 0.25 (1), 0.50 (2), 1.0 (3). Solid curve is 

the values obtained based on Eq. (31) and dot–dashed curves 
and triangles – based on the Monte Carlo method.  
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Figure 1 shows the results of comparison between the 
values of T obtained from formula (31) and by the Monte Carlo 
method.1,12 As can be seen from Fig. 1 the data are substantially 
different only for optically thick clouds at inclined illumination. 
The reason for this is a low accuracy of small–angle 
approximation for optically thick scattering layers.  
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