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The amplitudes and shapes of sound pulses generated by laser beams propagating 
through the atmosphere are numerically investigated. Families of curves are plotted for 
three different types of the beam time modulation, namely, a triggering pulse, a short 
laser pulse, and a harmonically modulated radiation. These curves describe acoustic 
response at an arbitrary distance from the beam axis at any time. Approximate relations 
for quantitative estimates of the amplitude of sound pulses at various distances from the 
beam axis are given. They describe the changes in sound pressure with distance to an 
accuracy of 5%. The frequency dependence of the amplitude of a periodic component of 
the acoustic signal on the beam axis is also studied.  

 
Propagation of laser radiation through an absorbing 

medium is accompanied by generation of sound in the 
propagation channel. Since, in the atmosphere electrostriction 
may but weakly contribute to changes in the pressure and 
density in the region of the beam,1 the basic physical 
mechanism of sound generation when the medium retains its 
state of aggregation is the thermal one. Therefore, the excited 
acoustic waves may be easily monitored and their spatial 
characteristics and temporal behavior may be controlled.2 
Thus, changes in the spatial configuration of the acoustic field 
may be obtained by adjusting the radiation regime and its 
parameters, because the acoustic response, generated by 
thermal expansion of the medium, is associated with the 
changes in the beam intensity.  

The conditions needed to increase the efficiency of 
recording of sound pulses or to obtain sound fields of a 
given configuration may be chosen on the basis of the 
theoretical models of such fields corresponding to a 
certain type of modulation of a laser beam. In this 
connection, it is of interest to consider several regimes of 
radiation, which are most often encountered in practice, 
and to calculate corresponding acoustic fields.  

The phenomenon of laser excitation of sound in the 
atmosphere was theoretically studied in Refs. 3, 4, and 5. 
The analytical formulas for sound pressure, given in Refs. 4 
and 5, were written in integral form, and therefore were not 
plotted. However, in certain particular cases, e.g., on the 
beam axis and at long distances from the axis, the solutions 
of the equation for pressure perturbations were obtained in 
terms of special functions, and the corresponding sound 
pulses were shown in the figures. However, such a 
description of the sound field excited by laser radiation 
modulated in a certain way is insufficient for practice.  

The aim of this paper is to reconstruct numerically the 
amplitude and shape of the sound pulses generated during 
propagation of laser beams through the atmosphere. The 
calculations were carried out for three different types of 
modulation of laser radiation, i.e., a triggering pulse (a 
stepwise function), a short laser pulse, and a harmonically 
modulated radiation. In the first case, the results of 
numerical integration representing the solution obtained in 
Ref. 4 and describing pressure perturbations are compared 
with the solution given in Ref. 5, and the limits of 
applicability of the last are found. In the case of the  

harmonic modulation of radiation, a frequency dependence 
of the acoustic amplitude is examined. A technique is 
proposed for numerical calculation of the radiation power 
and of the air absorption coefficient.  

The pressure perturbation p at a distance r from the 
beam axis is described by the well-known equation  
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where u is the sound velocity, α is the coefficient of light 
absorption in air, and γ is the gas constant.  

If the beam is Gaussian and is amplitude modulated by 
the function f(t)  
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the solution of Eq. (1) can be represented in the form4 
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where W is the beam power, I is the radiation power 

density, a is the characteristic beam size, r
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dependence I(r, t), in particular, by the function f(t).  
 

TRIGGERING PULSE  
 
Solution (2) acquires the following form for the 

stepwise function f
1
(t) = H(t):  
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Integral solution (3) is the rigorous solution of the 
equation describing the change in the pressure at the 
distance r from the beam axis.  

According to Ref. 5, we have for the considered case  
 

p
1
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where  
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and D
–1/2

 ( 2x) is the parabolic cylinder function.  

Solution (4) gives an approximate formula for sound 
pressure, since it is obtained on the assumption that the 
observation point is far from the beam axis (r . a).  
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FIG. 1. Sound pulses generated by the stepwise leading 
front of laser signal at various distances from the beam axis 

r
–

 indicated on the curves (a) and sound fields generated by 

the same front at different times t
–

 indicated on the curves 
(b and c). Solid lines denote the rigorous solutions and 
dashed lines – the approximate solution.  

 

We compared solutions (3) and (4) with the help of 
numerical integration. The plots describing the shapes of 
sound pulses and sound fields are shown in Figs. 1a, b, 
and c. Solid lines show the rigorous solution and dashed 
lines – the approximate solution. As can be seen from 
these figures, the assumption r . a used to derive 
solution (4) makes it virtually inapplicable for short 
times, particularly within the region of the beam. 
However, the approximate solution can be applied for 
calculations of the sound field with good accuracy, even 

within the region of the beam, if time t ≥ 
6a
u . Solution (3) 

is preferable for numerical calculations, since it allows 
one to estimate the values of the sound pressure at 
arbitrary distances from the beam axis at any time, which 
is quite important for solving various practical problems.  

It should be noted that the dimensional coefficients 

in formulas describing p( r
–

, t
–

) were neglected for the 
considered types of modulation, because they determine 
the amplitude of sound pulses rather than their shape. 

The dimensionless values of p( r
–

, t
–

) were calculated 
following the trapezoid rule and applying the Romberg 

extrapolation to the discrete sets of r
–

, and t
–

. The upper 
limit of integration was bounded by the domain of 
existence of the integrand. Based on the results of 
calculations, we plotted the families of curves which 
described the changes in the sound pressure as functions 

of time for fixed r
–

 and the distance for fixed t
–

.  
It can be seen from Fig. 1a that the acoustic 

response generated by a stepwise leading front of a laser 
pulse decreases rather slowly with increase of the distance 
from the beam axis and at r = 2a it is about 53% of the 
maximum value obtained at the beam center. The general 

trend of changes in p
max

( r
–

) may be approximated by the 

function 
1

1 + r2
 + 0.08 for distances varying from 0 to 

2a and by 
1

4
1 + r2

 – 0.06 for distances r > 2a. The 

accuracy of approximation in this case is about 5%. The 
same accuracy is obtained in other cases considered 
below.  

 
SHORT LASER PULSE  

 

In the case of a short laser pulsewidth τ n 
a
u, we 

have f
2
(t) = 

E
W δ(t), where E is the energy, and 

solution (2) describing pressure perturbation takes the 
form  
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Sound pulses on the beam axis and at distances 

divisible by a from the axis are shown in Fig. 2a. The 
temporal behavior of the sound field can be seen in 
Figs. 2b and c.  
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FIG. 2. Sound pulses generated by the short laser pulse at 

various distances from the beam axis r
–

 indicated on the 
curves (a) and sound fields generated by the same pulse at 

different times t
–

 indicated on the curves (b and c).  
 
The acoustic response on the beam axis is almost two 

times greater than the corresponding response excited by the 
stepwise leading front of the signal. However, at r = 2a the  

maximum sound pressure is about 21% of the corresponding 
value on the beam axis (see Fig. 2a). The changes in p

max
(r) 

may be approximated by the functions 2exp(–r2) within the 

region of the beam and by 
1

3
(1 + r)2

 for r > a. At distances 

[1.4; 5.0] the latter function should be corrected for (–0.04). 
 

HARMONIC MODULATION 

 
If the beam intensity is modulated by the function 

f
3
(t) = H(t)(1 + sin(ωt)) we have the following solution of 

Eq. (1) taken from Ref. 4: 
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where ω
–

 = 
ωa
u  . 

Sound pulses and fields, calculated according to this 
formula for a fixed frequency Ошибка! = 1.6, are shown 
in Figs. 3a, b, and c.  

It should be noted that the repetition frequency of 
the sound pulses at arbitrary distance from the beam axis 
coincides with the beam modulation frequency. The 
amplitude of the first acoustic response is greater than the 
amplitude of the subsequent periods of sound oscillations. 
This effect may be attributed to superimposing of the 
triggering pulse on the harmonically modulated laser 
radiation. The change in the maximum sound pressure 
with increase of the distance from the beam axis (see 
Fig. 3a) is slower than in the foregoing case and may be 

described by a function 
2

3
1 + 1.7r2

 for the first sound 

pulse at distances 0 ≤ r ≤ 4a and by 
2

3
1 + r2

 at r > 4a. 

The amplitudes of the subsequent sound pulses at the 
same distances are described by the functions 

1/(1 + r2) + 0.54 and 
1

4
1 + r2

 , respectively. At distances 

[4.0; 10.0] the latter function should be corrected for 
(+0.05).  

The dependence of the periodic component of the 
acoustic signal on the beam axis on the modulation 
frequency obtained from Eq. (6) is given by the formula  
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where E
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/4) is the integral exponent.  
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FIG. 3. Temporal behavior of the sound pressure at 

various distances r
–

 from the beam axis for harmonic 
modulation of the beam intensity with the frequency  

ω
– = 1.6 (a). Distances from the beam axis are indicated 
on the curves. Changes in the sound pressure with 

distance at different times t
–

 indicated on the curves  
(b and c).  

 
Frequency dependence of the amplitude of the periodic 

component calculated from Eq. (7) is shown in Fig. 4a.  
 

The results of calculations confirm the existence of two 
extrema at frequencies f

1
 = 0.07u/a and f

2
 = 0.45u/a that 

were discussed in Ref. 4. Their amplitudes are now refined  
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FIG. 4. Frequency dependence of the amplitude of the 
periodic component of the acoustic response on the beam 
axis (a) and the dependence of the maximum (solid lines) 
and minimum (dashed lines) sound pressures on the beam 
axis on the modulation frequency (b).  

 
It follows from Fig. 4a that the amplitude of the 

periodic component of sound attains its maximum at 
f
2
 = 0.45u/a. In addition, there exists a frequency 

f
0
 = 0.194u/a, at which the periodic component in the 

acoustic signal vanishes. 
For comparison we calculated the frequency 

dependences of the maxima and minima in the sound pulse 
on the beam axis in the case of the time modulation of the 
beam of the form f

4
(t) = H(t)⋅sin(ωt). These results are 

shown in Fig. 4b. They represent the envelops of the curves 
describing the changes in the sound pressure vs modulation 

frequency at different times t
–

. It can be seen from this 
figure that the nonharmonic modulation results not only in 
the deviation of the frequency at which the acoustic signal 
is at maximum (f = 0.27u/a) but also in the variation of 
the character of frequency dependence.  
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Thus, our calculated results give full description of 
the acoustic fields generated during the propagation of 
modulated laser beams through the atmosphere.  

Combining an experiment with such numerical 
calculation will permit one to determine either the 
radiation power or the absorption coefficient of air for a 
given type of modulation of the beam, since the 
calculated dimensionless sound pressure differs from the 
experimental one in the coefficient, which is constant in 
Eqs. (3), (5), and (6) for every type of modulation and 
contains the sought-after parameters.  
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