ON THE POSSIBLE WAYS OF VARYING THE RELATIVE INTENSITY OF THE BANDS OF THE DIFFRACTION PATTERN DUE TO A SCREEN

Yu.I. Terent'ev
Institute of Atmospheric Optics, Siberian Branch of the Academy of Sciences of the USSR, Tomsk Received January 24, 1991

Abstract

Some experiments on varying the intensity of the bands of the diffraction pattern due to a screen for the constant parameters of the diffraction scheme, intensity of incident light, and width of the open side of the wavefront are considered. It was found that along with the increase in the diffraction maxima, a reduction of the illumination in the geometric shadow from the screen occurs and vice versa.

A quantitative description of the diffraction pattern due to a screen based on the interference of the edge rays with the directly transmitted rays, which is adequate to the experiment, was given in Refs. 1 and 2. As is well known, the location and the intensity of the bands determined on the basis of Fresnel's ideas under conditions of constant intensity of light across the wavefront are also close to their actual values. In connection with the establishing the factors of this agreement in Ref. 2 it became obvious that Fresnel's ideas are formal. Indeed, if the Huygens-Fresnel principle had been essentially valid, it would have been impossible to vary the intensity of the diffraction bands in the case, in which the parameters of the diffraction scheme, the intensity of the incident light, and the width of the open side of the wavefront were constant. But the experience shows the opposite case. Moreover, the ways of varying the intensity are an organic consequence of Young's ideas about the nature of light diffraction. One of these ways is described in the paper that deals with establishing the real factors of the variation in the axial intensity of light with the change of the width of the collimating slit. Its essence is an increase in the intensity of the edge rays, which interfere with the directly transmitted rays due to the superposition on them of the edge rays initially propagating into the shadow. ${ }^{3}$

Let us consider the effect of this way of varying the intensity on the diffraction pattern due to a screen. The corresponding scheme is given in Fig. 1, where s_{1} is the $30-\mu \mathrm{m}$ wide slit illuminated by a parallel beam of green light with $\lambda=0.53 \mu \mathrm{~m}$ and h is the distance from the geometric shadow boundary (GS) to the bands of the diffraction pattern in the plane of the scanning slit s_{2}. In contrast to the scheme shown in Fig. 4 of Ref. 1, in this scheme a thick screen formed by a glass rectangular prism with the length of the cathetus faces being equal to 10.6 mm was used instead of a thin screen (blade). In order to eliminate falling of the direct rays from s_{1} within the face $A B$, the prism was positioned at an angle $i=0.076^{\circ}$ with respect to the beam axis when the edge A ($l=12 \mathrm{~mm}$ and $L=99.5 \mathrm{~mm}$) was located up against the axis of the light beam

The edge rays diffracted by the edge A into the shadow from the prism partially fell within the face $A B$ (2) and partially passed by it (3). After the reflection from the face, the rays 2 are superposed on the edge rays 1 , which propagate from the edge A to the right of the GS. Due to the loss of the half wave at the moment of reflection, the rays 1 and 2 , which were initially out of phase, ${ }^{1}$ turned out to be in phase and, therefore, reinforced each other. As a
consequence of the increased intensity of the edge rays, which interfere with the directly transmitted rays 4 , the intensities in the maxima of the diffraction pattern increase, while the intensities in the minima decrease compared to their values of the diffraction pattern due to a thin screen. This is confirmed by the data in Table I, where $h_{\exp }$ and h_{c} are the experimental and calculated (based on formula (3)) values of $h,{ }^{1} \Delta h=\left(h_{\exp }-h_{c}\right), J_{p}$ is the intensity of the bands when the prism forms a screen, J_{l} is the intensity of incident light in the plane $s_{2}, J_{e p}$ and $J_{e b l}$ are the intensities of the edge rays at the edge A of the prism and at the edge of the thin screen (blade), $\Delta J_{p}=\left(J_{p}-J_{l}\right), \Delta J_{b l}=\left(J_{b l}-\right.$ J_{l}), and $J_{b l}$ is the intensity in the bands of the diffraction pattern due to a blade.

FIG. 1. The scheme of the diffraction of light from the thick screen.

The values of $\Delta J_{p}, J_{p} / J_{l}$, and $J_{e p} / J_{e b l}$ given in the table are slightly underestimated because of a partial refraction of the rays into the prism resulting in the formation of the refracted beam 5. ${ }^{4}$ Judging from the value $J_{e p} / J_{e b l}$, in the absence of this refraction, $J_{e p}$ would exceed $J_{e b l}$ by a factor of ~ 4 at all the angles of deviation of the diffracted rays. In this case, the fluxes $\phi_{\mathrm{e} 1}$ and $\phi_{\mathrm{e} 2}$ produced by the rays 1 and 2 , which interfere with each other, would
have approximately identical values and their summation would produce the resultant flux $\phi_{\mathrm{e} 12}$ exceeding the arithmetic sum of $\phi_{\mathrm{e} 1}$ and $\phi_{\mathrm{e} 2}$ by a factor of 2 . As a result, the interference of the rays 1 with the rays 2 under these conditions does occur without the path difference between the rays.

Along with the increase of i caused by a strong dependence of the intensity of the edge rays on the angle of their deviation from the initial direction of propagation, the number of the rays 2 falling within the face of the prism and being reflected from it rapidly decreases, which causes the attenuation of $J_{e p}$. As a result, $\Delta J_{p}, J_{p} / J_{l}$, and $J_{e p} / J_{e b l}$ tend to the corresponding values for the thin screen. The behavior of this attenuation is demonstrated in Tables II-IV. According to them, already at $i=1.8^{\circ}$ the perturbation of the light field caused by the thick glass screen is close in value to the perturbation caused by the thin screen while at $i=10.8^{\circ}$ the thick screen is virtually equivalent to the thin one.

The correctness of the foregoing explanation of the increase in the light intensity in the maxima of the diffraction pattern due to the thick screen and of the decrease of the light intensity in the minima was supported by the experiments, in which the face $A B$ of the prism was coated with the layer of soot $26 \mu \mathrm{~m}$ thick. In this case, because of the absorption of the incident rays 2 by the soot, the intensity of the reflected rays 2 decreased and for this reason the total flux of the edge rays interfering with the directly transmitted rays, reduced. As a result, the diffraction bands became less contrast, which is evident from the comparison of the data in Tables V and VI characterizing the diffraction patterns in the experiments with clean and blackened faces $A B(l=12, L=136 \mathrm{~mm}$, and $i=0.1^{\circ}$).

When the face of the prism is covered with soot, an increase of Δh is observed as the order of the bands increases starting from $\min _{2}$. The reason of this effect becomes clear when we take into account the fact that the phase shift of the reflected rays at the moment of light reflection from the absorbing media differs from π. Under these conditions, this difference is the greater, the higher is the order of the bands, that is, the larger is the distance of deviation h of the reflected rays. The variation of the indicated phase shift results in a mismatch of the phases of the rays 1 and 2 . For this reason, the reflected rays 2 in $\min _{2}$ and in the subsequent bands, instead of reinforcing the rays 1 , vice versa attenuate them. Hence, $J_{e p} / J_{e b l}$ becomes smaller than unity. As a consequence of the phase shift between the rays 1 and 2 , a decrease of the the path difference between the rays derivative from them and the rays 4 by the value not of $0.69 \lambda / 2$, but of $k_{0} \lambda / 2$ takes place. Let us substitute k_{0} for 0.69 in Eq. (3) (Ref. 1) and invert the formula. Then $k_{0}=\left[\frac{h^{2} l}{\lambda L(L+l)}-k\right]$ if $h=h_{\text {exp }}, k=0,2,4, \ldots$ corresponds to the maxima and $k=1,3,5, \ldots$ corresponds to the minima of the diffraction pattern.

In contrast to the increase of the intensity of the edge rays in the illuminated side with the thick screen positioned at small angles i with respect to the axis, a significant
attenuation of the intensity of the edge rays propagating into the shadow, occurs. This is illustrated by Fig. 2, where curves 1,2 , and 3 show the intensities J_{e} of the light diffracted behind the screen as functions of h at i being equal to $0.076,0.45$, and 10.8°. This intensity slightly increases when a layer of soot covers the face $A B$ in contrast to the attenuation of the intensity of the edge rays propagating to the illuminated side, which is evident from Fig. 3. Here the J_{e} as functions of h are shown by the curves 1 and 2 at $i=0.1^{\circ}$ for the cases of clean and blackened faces $A B$. The analogous dependence for the thin screen is represented by the curve 3 .

FIG. 2. The plots demonstrating the attenuation of the light intensity in the geometric shadow from the thick screen instead of the thin one.

FIG. 3. The curves, which characterize the increase in the light intensity in the geometric shadow from the prism when a layer of soot covers the face $A B$.

TABLE I.

$i=0.076{ }^{\circ}$														
Band	$h_{\text {exp }}, \mathrm{mm}$	$h_{\mathrm{c}}, \mathrm{mm}$	$\Delta h, \mu \mathrm{~m}$	J_{p}	J_{1}	J_{ep}	ΔJ_{p}	ΔJ_{bl}	J_{p} / J_{1}	J_{bl} / J_{1}	$J_{\mathrm{ep}} / J_{\mathrm{ebl}}$			
$\max _{1}$	0.564	0.582	-18	52.1	28	3.712	24.1	11.94	1.861	1.426	3.512			
$\min _{1}$	0.901	0.910	-9	10.2	19	1.36	-8.8	-5.32	0.536	0.72	3.123			
$\max _{2}$	1.141	1.148	-7	21.79	13.2	1.071	8.6	4.04	1.651	1.306	3.976			
$\min _{2}$	1.336	1.345	-9	4.63	8.2	1.507	-3.6	-2.4	0.564	0.712	3.27			
$\max _{3}$	1.511	1.516	-5	9.66	5.7	0.519	4	2	1.695	1.354	3.624			
$\max _{4}$	1.811	1.811	0	4.12	1.9	0.423	2.2	1	2.167	1.535	4.013			
CS	0	0	-	4.33	36	4.33	-	-	0.12	0.308	0.39			

TABLE II.

$i=0.45^{\circ}$															
Band	$h_{\text {exp }}, \mathrm{mm}$	$\Delta h, \mu \mathrm{~m}$	J_{p}	J_{1}	$J_{\text {ep }}$	ΔJ_{p}	ΔJ_{bl}	J_{p} / J_{1}	J_{bl} / J_{1}	$J_{\text {ep }} / J_{\text {ebl }}$					
$\max _{1}$	0.564	-18	41.74	28	1.368	13.74	11.94	1.491	1.426	1.294					
$\min _{1}$	0.907	-3	12.31	19	0.724	-6.69	-5.32	0.648	0.72	1.662					
$\max _{2}$	1.145	-3	18.28	13.2	0.413	5.08	4.04	1.385	1.306	1.533					
$\min _{2}$	1.345	0	4.61	8.2	0.515	-3.59	-2.4	0.561	0.712	2.567					
$\max _{3}$	1.522	6	8.21	5.7	0.228	2.51	2	1.44	1.354	1.494					
$\max _{4}$	1.832	21	3.13	1.9	0.152	1.23	1	1.647	1.535	1.403					
GS	0	-	10.39	36	10.39	-	-	0.288	0.308	0.935					

TABLE III.

$i=1.8^{\circ}$										
Band	$h_{\text {exp }}, \mathrm{mm}$	$\Delta h, \mu \mathrm{~m}$	J_{p}	J_{1}	$J_{\text {ep }}$	ΔJ_{p}	ΔJ_{bl}	J_{p} / J_{1}	J_{bl} / J_{1}	$J_{\mathrm{ep}} / J_{\text {ebl }}$
$\max _{1}$	0.564	-18	40.26	28	1.109	12.26	11.94	1.438	1.426	1.05
$\min _{1}$	0.919	9	13.32	19	0.504	-5.68	-5.32	0.701	0.72	1.158
$\max _{2}$	1.159	1	17.28	13.2	0.275	4.08	4.04	1.309	1.306	1.02
$\min _{2}$	1.359	14	6.27	8.2	0.129	-1.93	-2.4	0.765	0.712	0.645
$\max _{3}$	1.524	8	7.79	5.7	0.163	2.09	2	1.367	1.354	1.07
$\max _{4}$	1.824	13	2.88	1.9	0.102	0.98	0.98	1.516	1.535	0.94
GS	0	-	10.68	36	10.68	-	-	0.296	0.308	0.961

TABLE IV.

$\mathrm{i}=10.8^{\circ}$										
Band	$h_{\text {exp }}, \mathrm{mm}$	$\Delta h, \mu \mathrm{~m}$	J_{p}	J_{1}	J_{ep}	ΔJ_{p}	ΔJ_{bl}	J_{p} / J_{1}	J_{bl} / J_{1}	$J_{\mathrm{ep}} / J_{\mathrm{ebl}}$
max_{1}	0.564	-18	39.7	28	1.019	11.7	11.94	1.418	1.426	0.964
$\min _{1}$	0.891	-19	13.7	19	0.432	-5.3	-5.32	0.721	0.72	0.993
$\max _{2}$	1.127	-21	17.3	13.2	0.277	4.1	4.04	1.311	1.309	1.027
$\min _{2}$	1.332	-13	6.1	8.2	0.155	-2.1	-2.4	0.744	0.712	0.774
$\max _{3}$	1.522	6	7.65	5.7	0.143	1.95	2	1.342	1.354	0.94
$\max _{4}$	1.812	1	2.9	1.9	0.105	1	1	1.526	1.535	0.971
GS	0	-	11.1	36	11.1	-	-	0.308	0.308	1

TABLE V.

Band	$h_{\text {exp }}, \mathrm{mm}$	$\Delta h, \mu \mathrm{~m}$	J_{p}	J_{1}	ΔJ_{p}	J_{p} / J_{1}	$J_{\text {ep }}$	$J_{\mathrm{ep}} / J_{\text {ebl }}$
$\max _{1}$	0.765	-18	52.53	30.71	21.82	1.711	2.911	2.9
$\min _{1}$	1.237	11	15.73	23.16	-7.43	0.679	0.715	1.72
$\max _{2}$	1.539	-7	25.29	17.89	7.41	1.414	0.640	2.37
$\min _{2}$	1.808	-3	8.67	12.85	-4.18	0.674	0.411	2.69
$\max _{3}$	2.039	-3	14	9.59	4.41	1.46	0.414	2.86
$\min _{3}$	2.249	0	4.28	6.29	-2.01	0.681	0.192	1.54
$\max _{4}$	2.432	-7	6.84	4.28	2.56	1.597	0.297	2.801
$\max _{5}$	2.782	2	3.16	1.82	1.34	1.737	0.184	-
GS	0	-	3.95	36	-	0.1096	-	-

TABLE VI.

Band	$h_{\text {exp }}, \mathrm{mm}$	$\Delta h, \mu \mathrm{~m}$	k_{0}	J_{p}	J_{1}	ΔJ_{p}	J_{p} / J_{1}	J_{ep}	$J_{\mathrm{ep}} / J_{\text {ebl }}$
$\max _{1}$	0.765	-18	-	44.74	30.69	14.1	1.458	1.321	1.314
$\min _{1}$	1.252	26	-	16.2	22.36	-6.2	0.725	0.496	1.248
$\max _{2}$	1.552	6	0.709	21.45	16.92	4.53	1.268	0.268	1.01
$\min _{2}$	1.832	21	0.775	9.74	12.06	-2.32	0.808	0.124	0.835
$\max _{3}$	2.078	36	0.857	10.57	8.62	1.95	1.227	0.099	0.712
$\min _{3}$	2.289	40	0.894	4.1	5.28	-1.18	0.776	0.075	-
$\max _{4}$	2.482	43	0.930	4.31	3.24	1.07	1.329	0.076	0.743
$\max _{5}$	2.842	62	1.08	1.64	1.03	0.62	1.6	0.072	-
GS	0	-	-	6.58	35.9	-	0.183	-	-

In the geometric shadow P, for example, at the point G, the illumination is produced by the weakly deviated rays 3 and glancing rays 2 . The face $A B$ prevents these rays from propagating to the side $h>p$. Nevertheless, according to the curve 1 (Fig. 2), when rotating the prism at an angle $i=0.076^{\circ}$ the light of an appreciable intensity propagates into the shadow at a distance $h \sim 0.74 \mathrm{~mm}$, while P is equal to 0.132 mm only. As a result, redeviation of the rays 2 and 3 passing nearby the edge B on either side of the preceding direction of their propagation takes place, which is apparently accompanied by an additional phase shifts similar to the initial phase shift at the moment of the deviation of the rays by the edge A. The secondary reflected rays 2 and 3 are designated in the figure by $2^{\prime}, 3^{\prime \prime}, 2^{\prime \prime}$, and $3^{\prime \prime}$.

As a consequence of a loss of the half-wave by the reflected rays 2 , the rays 2 and 3 arriving within the distance P and the rays $2^{\prime \prime}$ and $3^{\prime \prime}$ propagating to the distances $h>P$ attenuate each other; therefore, the illumination in the shadow is lower than its value behind the thin screen. After blackening the face, the intensity of the reflected rays 2 attenuates and, consequently, they attenuate the rays 3 and $3^{\prime \prime}$ to a smaller degree, which results in the increase of the illumination noted above.

When the prism is rotated at an angle $i=0.45^{\circ}$ and more, the intensity of the rays $3^{\prime \prime}$ and $2^{\prime \prime}$ decreases because of the attenuation of the intensity of the rays 2 and 3 in the edge B. As a result, the main part of the illuminated side of the shadow turns out to be limited by the distance P.

Nearby the shadow boundary, to the right of it, for example, at the point D, the rays $1,2,4,2^{\prime}$, and 3^{\prime} converge. Any objective estimate of the light intensity in this region is impossible because of lack of the information about their intensity and the initial phase shifts which at small angles of deviation of the rays, as shown in Ref. 3, differ from the values determined in Ref. 1. Judging by the experience it is smaller compared to the value observed in the diffraction pattern due to the thin screen.

REFERENCES

1. Yu.I. Terent'ev, Atm. Opt. 2, No. 11, 970-974 (1989).
2. Yu.I. Terent'ev, ibid. 2, No. 11, 975-981 (1989).
3. Yu.I. Terent'ev, ibid. 4, No. 4 267-281 (1991).
4. Yu.I. Terent'ev, Izv. Vyssh. Uchebn. Zaved., Ser. Fiz. No. 12, 55-58 (1987).
