THE AXIAL INTENSITY OF A LIGHT BEAM AS A FUNCTION OF THE SLIT WIDTH DERIVED ON THE BASIS OF YOUNG'S DESCRIPTION

Yu.I. Terent'ev
Institute of Atmospheric Optics, Siberian Branch of the Academy of Sciences of the USSR, Tomsk Received January 24, 1991

The dependence of the axial light beam intensity on the width of a slit limiting a beam starting from the interference of the edge rays with the axial rays is explained.

Expressions are derived for the half-width of a limiting slit and the intensities of the maxima and minima of the illumination that agree fairly well with the experimental data.

The conditions are considered under which the significant amplification of the axial intensity oscillations is observed on the beam axis caused by the change of the width of a limiting slit with the intensity of the incident light and other experimental parameters being constant.

Abstract

The quantitative description of a light diffraction pattern by a slit observed in the geometric shadow was given in Ref. 1. This description was based on the interference of the rays diffracted from the diametrically opposed edges of screens forming a slit. It came into use owing to the fact that new data on the edge wave were established in Ref. 2.

Here, in the contrast to the above-mentioned conditions, the direct rays propagate simultaneously with the edge rays to the region of the projection of a slit. Hence, the light intensity at the arbitrary points lying on the beam axis must be determined by the interference of the edge rays with the direct rays.

Figure 1 shows a diagram of the interference of the rays, where 1 and 2 are the edge rays and 3 is the direct ray which converge on the beam axis in the plane of the slit S_{3} of 30 mm width; S_{2} is the slit of variable width positioned symmetrically about axis of a beam which comes from the slit S_{1} of 30 mm width; l and L are the distances from S_{2} to the light sources S_{1} and S_{3}, respectively; h is the distance from the geometric shadow boundary (GSB) to the beam axis in the plane $S_{3} ; \varepsilon$ is the angle of deflection of the edge rays from the initial direction; and, t_{h} is the half-width of S_{2}.

FIG. 1. The diagram of interference of the rays diffracted by the edges of a slit of the variable width with the axial rays.

Based on this diagram, we derive the formula which describes the appearance of the maxima and the minima of the light intensity in the plane S_{3} at the point Q as a function of the width S_{2}. The total difference of the path lengths between the rays 1,2 , and 3 is equal to $\Delta=\left(\Delta_{g}-\Delta_{a}\right)$, where Δ_{g} is the geometric path difference between the above-mentioned rays and Δ_{a} is the additional path difference which is equal to $0.69 \lambda / 2$ and is caused by an initial phase jump of 0.69π which the edge rays experience propagating to the illuminated side along the ray paths. ${ }^{2}$ Obviously, $\Delta_{g}=\left(\Delta_{1}+\Delta_{2}\right)$. Since $\Delta_{1}=t_{h}^{2} / 2 l$ and $\Delta_{2}=t_{h}^{2} / 2 L$, then $\Delta_{g}=t_{h}^{2}(L+l) /(2 l L)$. In what follows
$\Delta=\left[\frac{t_{h}^{2}(L+l)}{2 L l}-\frac{0.69 \lambda}{2}\right]=k \lambda / 2$.
From which
$t_{h}=\sqrt{(0.69+k) \lambda L l /(L+l)}$,
where k is the number of $\lambda / 2$ in the total path difference between the rays; $k=0,2,4, \ldots$ corresponds to the maxima while $k=1,3,5, \ldots$ corresponds to the minima of the illumination at the point Q. The validity of Eq. (1) can be easily confirmed by the data from Tables I and II in which the half-width of the slit $t_{\text {hcal }}$ calculated from this formula is compared with its actual value $t_{h a}$, where $\Delta t=\left(t_{\text {ha }}-t_{\text {hcal }}\right)$.

As the next step, we find the expressions describing the light intensity on the beam axis when it attains its maximum and minimum. According to Ref. 2, the intensity of the edge rays is $I_{e}=A / h^{2}$, where $I_{e}=I_{e 1}=I_{e 2}$. As can be seen from Fig. 1, $h=t_{h}(L+l) / l$. In this case I_{e} and the amplitude of the edge a_{e} are equal to
$I_{e}=\frac{A l^{2}}{t_{l}^{2}(L+l)^{2}}$, and $a_{e}=\frac{\sqrt{A} l}{t_{h}(L+l)}$.

Table I

$l=51.5 \mathrm{~mm} ;$		$L=408.5 \mathrm{~mm} ;$	$\lambda=0.53 \mu \mathrm{~m}$	
Band	k	$t_{h a}, \mathrm{~mm}$	$t_{\text {hcal }}, \mathrm{mm}$	$\Delta t, \mu \mathrm{~m}$
$\max _{1}$	0	0.1335	0.1293	4.2
$\min _{1}$	1	0.201	0.2024	-1.4
$\max _{2}$	2	0.256	0.2554	0.6
$\min _{2}$	3	0.3005	0.299	1.5
$\max _{3}$	4	0.3385	0.3372	1.3
$\min _{3}$	5	0.373	0.3714	1.6
$\max _{4}$	6	0.4035	0.4027	0.8
$\min _{4}$	7	0.4335	0.4318	1.7
$\max _{5}$	8	0.461	0.459	2

TABLE II

$l=100 \mathrm{~mm} ;$		$L=191.5 \mathrm{~mm} ;$	$\lambda=0.53 \mu \mathrm{~m}$	
Band	k	$t_{h a}, \mathrm{~mm}$	$t_{\text {hcal }}, \mathrm{mm}$	$\Delta t, \mu \mathrm{~m}$
$\max _{1}$	0	0.1583	0.155	3.3
$\min _{1}$	1	0.2473	0.2426	4.7
$\max _{2}$	2	0.3083	0.306	2.3
$\min _{2}$	3	0.3603	0.3585	1.8
$\max _{3}$	4	0.4073	0.4040	3.3
$\min _{3}$	5	0.4473	0.445	2.3
$\max _{4}$	6	0.4843	0.4826	1.8
$\min _{4}$	7	0.5183	0.5175	0.8

Owing to the summation of the amplitudes of the interfering rays, the resultant amplitude of the maxima of the illumination is $a_{\max }=\left(2 a_{e}+a_{a}\right)$, where a_{a} is the amplitude of the direct rays on the beam axis. Then,
$I_{\text {max }}=a_{\text {max }}^{2}=\left(4 I_{e}+4 \sqrt{I_{e} I_{a}}+I_{a}\right)$,
where I_{a} is the intensity of the axial rays. According to Ref. 3, in the case of the cylindrical incident wave we have
$A=0.02046 \lambda L(L+l) I_{d r} / l$, where $I_{d r}$ is the intensity of the direct rays coming from the screens of S_{2} in the plane of S_{3} the presumed shadow boundary provided that the slit S_{2} is removed from the beam. On account of this, we derive
$I_{e}=\frac{0.02046 \lambda L l I_{d r}}{t_{l}^{2}(L+l)}$,
$I_{\text {max }}=\left[\frac{0.08184 \lambda L l I_{d r}}{t_{h}^{2}(L+l)}+\frac{4}{t_{h}} \sqrt{\frac{0.02046 \lambda L l I_{d r}}{L+l}}+I_{a}\right]$,
where t_{h} is the calculated half-width of S_{2} for the conditions of the maxima of the illumination on the beam axis. If t_{n} is replaced by its value from Eq. (1), then we derive
$I_{\text {max }}=\left[\frac{0.08184 \lambda I_{d r}}{0.69+k}+4 \sqrt{\frac{0.02046 I_{a} I_{d r}}{0.69+k}}+I_{a}\right]$.
In the minima of the illumination we have $a_{\text {min }}=\left(a_{a}-2 a_{e}\right)$, hence,
$I_{\min }=\left(I_{a}+4 I_{e}-4\left(I_{a} I_{e}\right)^{1 / 2}\right)$
Substituting for I_{e} its value from Eq. (2) we have

$$
\begin{equation*}
I_{\min }=\left[\frac{0.08184 \lambda L l I_{d r}}{t_{h}^{2}(L+l)}-\frac{4}{t_{h}} \sqrt{\frac{0.02046 \lambda L l I_{d r}}{L+l}}+I_{a}\right], \tag{5}
\end{equation*}
$$

By solving Eqs. (5) and (1) simultaneously we express $I_{\text {min }}$ in terms of k
$I_{\text {min }}=\left[\frac{0.08184 I_{d r}}{0.69+k}-4 \sqrt{\frac{0.02046 I_{d r} I_{a}}{0.69+k}}+I_{a}\right]$,

Table III

$l=100 \mathrm{~mm} ; \quad L=191.5 \mathrm{~mm} ; \quad \lambda=0.53 \mu \mathrm{~m}$														
Band	$t_{\text {lcal }} \mu \mathrm{m}$	$I_{\text {exp }}$	I_{a}	$I_{\exp } / I_{a}$	$I_{d r} / I_{a}$	$I_{\text {cal }}$	$a_{\text {exp }}$	a_{a}	a_{e}	I_{e}	$h_{\text {cal }}$	A	ε°	I_{a}^{\prime}
$\max _{1}$	0.155	26.4	15.1	1.748	0.989	27.16	5.138	3.886	0.626	0.392	0.452	0.08	0.136	0.396
$\min _{1}$	0.2426	9.5	-	0.629	0.966	9.28	3.082	-	0.4019	0.1615	0.707	0.081	-	0.167
$\max _{2}$	0.306	20.4	-	1.351	0.949	20.66	4.517	-	0.3153	0.0994	0.892	0.079	-	0.105
$\min _{2}$	0.3585	11.16	-	0.74	0.934	11.07	3.3406	-	0.273	0.0745	1.045	0.0814	-	0.08
$\max _{3}$	0.404	19.8	-	1.263	0.908	19.14	4.368	-	0.2409	0.058	1.178	0.0796	-	0.064
$\min _{3}$	0.445	11.89	-	0.788	0.886	11.89	3.449	-	0.2186	0.0478	1.298	0.0805	-	0.. 054
$\max _{4}$	0.4826	18.37	-	1.217	0.859	18.35	4.286	-	0.200	0.040	1.407	0.0792	-	0.047
min_{4}	0.5175	12.35	-	0.818	0.833	12.4	3.5145	-	0.1857	0.0345	1.509	0.0785	-	0.042

The correspondence of formulas (3) and (5) and, hence, (4) and (6) with the results of the experiment is confirmed by the data from Table III, where $I_{\exp }$ are the experimental values of the intensity; $I_{\text {cal }}$ are the calculated values of the intensity determined from formulas (3) and (5). Here the constancy of A for all the recorded maxima and minima has been demonstrated which is the additional confirmation of the previously established character of the change in I_{e}. To this end, we found $a_{\exp }=\left(I_{\exp }\right)^{1 / 2}$ and $a_{a}=\left(\left(I_{a}\right)^{1 / 2}\right), \quad a_{e}=\left(a_{\exp }-a_{a}\right) / 2, \quad I_{e}=a_{e}^{2}, \quad h_{\text {cal }}=f\left(t_{\text {lcal }}\right)$, and, finally, $A=I{ }_{e} h_{c a l}^{2}$. The last column of the table contains the values of the intensity of the edge wave for $I_{d r}=I_{a}$, which are equal to $I_{e}^{\prime}=I_{e} I_{a} / I_{d r}$.

If we consider the interference of the axial rays with the rays coming from one edge of S_{2} for max when $I_{d r}=I_{a}$, we obtain $a_{e}^{\prime}=\left(I_{e}\right)^{1 / 2}=0.63 ; a_{\max 1}=\left(a_{a}+a_{e}^{\prime}\right)=4.516$;
$I_{\max 1}=a_{\max 1}^{2}=20.394 ; I_{\max 1} / I_{a}=1.351$. On account of the measurement error we have this ratio equal to its value in the case of diffraction by the screen ${ }^{3}$ that testifies once more the correctness of the explanation of the phenomena which determine the light intensity in both cases.

In order to find the light intensity on the beam axis for any arbitrary width of S_{2}, we will take advantage of the summation rule for the coherent oscillations. According to this rule we have
$I_{\text {lcal }}=a_{a}^{2}+\left(2 \mathrm{a}_{e}\right)^{2}+2 a_{a} a_{e} \cos \psi=\left(I_{a}+4 I_{e}+4\left(I_{a} I_{e}\right)^{1 / 2} \cos \psi\right)$,
where ψ is the phase difference between the axial and edge rays. It is obvious that
$\psi=\frac{2 \pi}{\lambda} \Delta=\left[\frac{t_{l}^{2}(L+l)-0.69 \lambda L l}{\lambda L l}\right] 180^{\circ}$.
When ψ and I_{e} are replaced by their values, we obtain
$I_{h c a l}=\left\{I_{a}+\frac{0.08184 \lambda L l I_{a} I_{d r}}{t_{l}^{2}(L+l)}+\frac{4}{t_{h}} \sqrt{\frac{0.02046 \lambda \mathrm{LI}_{\mathrm{a}} \mathrm{I}_{d r}}{L+l}} \times\right.$
$\left.\times \cos \left[\frac{t_{l}^{2}(L+l)-0.69 \lambda L l}{\lambda L l}\right] 180^{\circ}\right\}$.
Table IV gives the values of $I_{h c a l}$ and $I_{\exp }$ for $t_{h}=t_{h}^{\prime}=$ $=\left(t_{h e}-2 \mu \mathrm{~m}\right)$ (see Ref. 1). These values indicate that $I_{\text {hcal }}$ are slightly higher than $I_{\exp }$ on these sides of the maxima which correspond to the smaller width of S_{2} while on the opposite sides, conversely, they are slightly lower. When $\varepsilon=57.3^{\circ} \quad t_{h}^{\prime}(L+l) /(l L) \quad$ decreases starting from approximately $\varepsilon=0.123^{\circ}$, the new factor comes into force and results in a considerable delay in $I_{\exp }$ which increases relative to $I_{\text {lcal }}$ (taking into account a certain excess of $I_{\text {lcal }}$ relative to $I_{\exp }$ on the sides adjacent to the maxima). As was pointed out in Ref. 2, this factor is due to the violation of the inverse proportionality of the amplitude of the edge wave to the deflection angle of the diffracted rays when ε is less than its critical value ε_{c}.

To clarify the behavior of the edge waves at the angles less than ε_{c}, we plot $I_{e}^{\prime}=f(h)$ by the points corresponding to I_{e}^{\prime} at the established maxima and minima of the intensity (Table III) and on the shadow boundary (Fig. 2). In the case of diffraction by the screen the ratio of the light intensity on the shadow boundary and the intensity of light incident on the shadow boundary without the screen is constant and according to the large quantity of experimental data is, on the average, equal to 0.306 . The direct rays propagating initially to the shadow boundary cannot reach it because of the diffraction from the edge of the screen. Therefore, the light intensity on the shadow boundary from the screen is essentially the intensity of the edge wave. Owing to the common factors forming the diffraction pattern from the screen and determining the illumination on the beam axis, the intensity of the edge wave on the shadow boundary under the considered conditions must be equal to $0.306 I_{d r}$ or $0.306 I_{a}$ (since $I_{d r} \simeq I_{a}$
for small t_{l}). In such a case the value of I_{e}^{\prime} needed for plotting the above-indicated curve, will be equal to $I_{e}^{\prime}=0.306 \cdot 15.1=4.62$ relative units on the shadow boundary.
TABLE IV

$l=100 \mathrm{~mm} ; ~ L=191.5 \mathrm{~mm} ; ~ \lambda=0.53 \mu \mathrm{~m}$							
	$t_{h}^{\prime}, \mathrm{mm}$	$I_{\text {exp }}$	$I_{\text {lcal }}$	$I_{\text {hcal }} / I_{\text {exp }}$	ψ	$\cos \psi$	ε°
	0.0713	9.85	20.45	2.076	$-97^{\circ} 55$	-0.1377	
	0.0813	12.35	21.6	1.75	$-90^{\circ} 2^{\prime}$	0	
$\max _{1}$	0.0913	14.45	23	1.59	$-81^{\circ} 6^{\prime}$	0.1548	
	0.1013	17.25	24.43	1.416	$-71^{\circ} 9^{\prime}$	0.3231	
	0.1113	19.55	25.78	1.32	$-60^{\circ} 10^{\prime}$	0.4975	
	0.1213	22.05	26.9	1.22	$-48^{\circ} 8^{\prime}$	0.6674	
	0.1313	24.15	27.6	1.144	$-35^{\circ} 5^{\prime}$	0.8183	0.114
	0.1413	25.5	27.9	1.094	-21°	0.9337	0.123
	0.1513	26.45	27.6	1.043	$-5^{\circ} 51^{\prime}$	0.9948	0.132
	0.1568	26.45	27.13	1.03	$2^{\circ} 5^{\prime}$	1	0.137
min_{1}	0.1613	26.45	26.6	1.005	$10^{\circ} 18^{\prime}$	0.9839	
	0.1713	26.65	24.9	0.97	$27^{\circ} 30^{\prime}$	0.887	
	0.1813	23.95	22.6	0.944	$45^{\circ} 44^{\prime}$	0.698	
	0.1913	21.5	19.84	0.923	65°	0.4229	
	0.2013	18.55	16.82	0.907	$85^{\circ} 17^{\prime}$	0.0823	
	0.2113	15.4	13.88	0.901	106 ${ }^{\circ}{ }^{\prime}{ }^{\prime}$	-0.286	
	0.2213	12.45	11.36	0.915	129°	-0.6291	
	0.2313	10.55	9.73	0.929	$152^{\circ} 28^{\prime}$	-0.8861	
	0.2433	9.45	9.21	0.975	$181^{\circ} 49^{\prime}$	-0.9995	
$\max _{2}$	0.2513	9.65	9.85	1.02	$202^{\circ} 17^{\prime}$	-0.9253	
	0.2613	11.35	11.72	1.033	$228^{\circ} 47^{\prime}$	-0.659	
	0.2713	13.55	14.28	1.054	$256^{\circ} 19^{\prime}$	-0.2366	
	0.2813	16.25	17.06	1.05	$284{ }^{\circ} 53^{\prime}$	0.2568	
	0.2913	19.1	19.38	1.015	$314^{\circ} 29$	0.7007	
	0.3078	20.45	20.64	1.01	$365^{\circ} 35^{\prime}$	0.9953	
	0.3213	18.9	18.24	0.965	$416^{\circ} 9^{\prime}$	0.557	
	0.3313	16.35	16.03	0.981	$443^{\circ} 14^{\prime}$	0.1178	

If we substitute I_{e}^{\prime} taken from the plot for $\varepsilon<\varepsilon_{c}$, into Eq. (7), $I_{\text {hcal }}$ will all the same differ from $I_{\exp }$. This fact can be explained only by the disagreement between the true values of ψ and those determined from the formula
$\psi=\left[\frac{\left(t_{l}^{\prime}\right)^{2}(L+l)-0.69 \lambda L l}{\lambda L l}\right] 180^{\circ}$.

This discrepancy may result only from the changes in the initial phase shift. Let us substitute k_{0} for 0.69 and reduce the formula to the form
$k_{0}=\frac{\left(t_{l}^{\prime}\right)^{2}(L+l)-\lambda L l \psi / 180^{\circ}}{\lambda L l}$.
Substituting $I_{\exp }$ (for various t_{h}^{\prime}) and I_{e}^{\prime} determined from the plot for $I_{\text {lcal }}$ and I_{e} into Eq. (7) we will find ψ and on their basis k_{0}. The calculated data are listed in Table V . The table shows that the decrease of t_{h} and, hence, ε for $\varepsilon<\varepsilon_{c}$ is accompanied by k_{0} vanishing with subsequent decreasing to -1 .

FIG. 2. The intensity of the edge rays on the beam axis as a function of the distance between the observation point and shadow boundary formed by the screens of a slit of the variable width.

Thus, for a considered range of variations in ε the initial phase shift of the edge rays propagating to the illuminated side is no longer constant and varies in such a way that a phase advance is gradually replaced by a phase delay which increases up to $-\pi$.

When a divergent beam incident on S_{2} is replaced by a parallel beam with $l=\infty$, formulas (1)-(3), (5), and (8) take the form
$t_{h}=\sqrt{(0.69+k) L \lambda}$,
$I_{e}=\frac{0.02046 \lambda L I_{d r}}{t_{h}^{2}}$,
$I_{\max }=\left[\frac{0.08184 \lambda L I_{d r}}{t_{h}^{2}}+\frac{4}{t_{h}} \sqrt{0.02046 \lambda L I_{a} I_{d r}}+I_{a}\right]$,
$I_{\text {min }}=\left[\frac{0.08184 \lambda L I_{d r}}{t_{h}^{2}}-\frac{4}{t_{h}} \sqrt{0.02046 \lambda L I_{a} I_{d r}}+I_{a}\right]$,
$I_{h c a l}=I_{a}+\frac{0.08184 \lambda L I_{d r}}{t_{h}^{2}}+\frac{4}{t_{h}} \sqrt{0.02046 \lambda L I_{a} I_{d r}} \times$
$\times \cos \left(\frac{t_{h}^{2}-0.69 \lambda L}{\lambda L}\right) 180^{\circ}$.

Let us express the considered light intensity in terms of Fresnel's integrals ${ }^{4}$
$C_{F}=\int_{0}^{v} \cos \left(\frac{1}{2} \pi v^{2}\right) d \mathrm{u}$ and $S_{F}=\int_{0}^{u} \sin \left(\frac{1}{2} \pi v^{2}\right) d v$
By analogy with Ref. 1, the parameter v can be written as $v=\left(2 k^{\prime}\right)^{1 / 2}$, where k^{\prime} is the number of the halfwaves in Δ_{g}. Since $\Delta_{g}=t_{h}^{2}(L+l) / 2 L l$, then $k^{\prime}=t_{h}^{2}$ $(L+l) / \lambda L l$. Hence,
$v=t_{h} \sqrt{\frac{2(L+l)}{\lambda L l}}$,
where $t_{h}=t_{h}^{\prime}$. We denote by a_{F} the amplitude of oscillations arrived at the point Q from the wavefront located within the half-width of S_{2}. Since $a_{F}=\left(C_{F}^{2}+S_{F}^{2}\right)^{1 / 2}$, the intensity on the beam axis is $I_{F}=\left(2 a_{F}\right)^{2}=4\left(C_{F}^{2}+S_{F}^{2}\right)$. To make comparison with the experimental results, we will transfer over from I_{F} to the intensity I_{F}^{\prime} which must be scaled to I_{a} on the basis of the formula
$I_{F}^{\prime}=I_{F} I_{a} / I_{F i}$,
where $I_{F i}$ is the Fresnel intensity of the incident light, $I_{F i}=\left[2\left(0.5^{2}+0.5^{2}\right)^{1 / 2}\right]^{2}=2$. Here 0.5 is the extreme values of Fresnel's integrals $(v \rightarrow \infty)$.

FIG. 3. The diagram of amplification of the intensity of the edge rays on the light beam axis.

As can be seen from Table VI, the values of I_{F}^{\prime} for the most part agree with $I_{\text {exp }}$. Disagreement appears and gradually increases for $\varepsilon \leq 0.1^{\circ}$, i.e., when the law $I_{e}=A / h^{2}$ is violated.

The agreement of I_{F}^{\prime} with the experimental values of the light intensity for a wide range of variations in t_{h}^{\prime} at first glance testifies the objective reality of Fresnel's description of the nature of light diffraction. But if it were actually the case, then for the constant values of the intensity of incident light and of the parameters of the experimental scheme it would be impossible to form the maxima and minima of the illumination on the beam axis whose intensities were higher or lower than the corresponding intensities listed in the tables. Starting from Young's description, we can easily realize this effect, for example, with the help of the diagram shown in Fig. 3. For
the slit S_{2} in the diagram shown in Fig. 1 the standard slit of the spectral devices can be employed. As is well known, such a slit has the sharp edges with the angles of sharpening much smaller than 90°. In this diagram the slit S_{2} is formed by two rectangular glass prisms with the sides of 10.6 mm in length. In order to avoid the incidence of the direct rays on the sides of the prisms for not too large t_{l}, the prisms were rotated about the beam axis at the angles $i=0.224^{\circ}$

Owing to this shape of the slit, the edge rays $2\left(2^{\prime}\right)$ deflected in the region of the edge $G(B)$ toward the shadow boundary are incident on the side of a prism and after reflection they are superimposed on the edge rays $1\left(1^{\prime}\right)$, diffracting into the illuminated side.

Because of a phase delay of π experienced after reflection, the rays 1 and 2 which were initially in antiphase, ${ }^{2}$ became matched in phase and for this reason amplify each other. In addition, the smaller the angles $\beta=(i-\gamma)$ the more efficient is the amplification, since a large number of rays 2 reaches the side and reflects from it.

As a result of the increased intensity of the edge waves interfering with the axial rays 3 , the intensities of the maxima turn out to be higher while of the minima - lower as compared with their values observed in the experiments performed according to the first scheme. This can be seen from the data listed in Table VII, where $I_{s t}$ and $I_{e t}$ are the experimental values of light intensity on the beam axis and the resultant intensity of the edge waves in the case in which the slit S_{2} is formed by thick
screens (prisms); $\quad I_{s t}=\left(I_{s t}\right)^{1 / 2} ; \quad a_{e t}=\left(a_{s t}-a_{a}\right) / 2 ; \quad I_{e t}=a_{e t}^{2}$; I_{e} is scaled to $I=16$ relative units. The intensity oscillations would be stronger if the partial refraction of rays 2 by the prism ${ }^{5}$ did not happen.

TABLE V

$l=100 \mathrm{~mm} ; \quad L=191.5 \mathrm{~mm} ; \quad \lambda=0.53 \mu \mathrm{~m}$								
$\max _{1}$	$t_{l}^{\prime}, \mathrm{mm}$	$h_{\text {cal }}$, mm	I_{e}^{\prime}	$I_{\text {exp }}$	$\cos \psi$	ψ°	k_{0}	ε°
	0.1563	0.456	0.396	26.45	-	-	0.696	0.136
	0.1513	0.441	0.43	26.45	0.9523	17.88	0.558	-
	0.1413	0.412	0.48	25.5	0.7935	37.5	0.365	-
	0.1313	0.383	0.51	24.15	0.6315	50.8	0.213	-
	0.1213	0.354	0.6	22.1	0.3812	67.6	0.047	-
	0.1113	0.324	0.66	19.55	0.1433	0.8177	-0.1	0.1
	0.1013	0.295	0.755	17.25	-0.0644	93.68	-0.226	
	0.0913	0.266	0.86	14.45	-0.2837	106.48	-0.352	0.08
	0.0813	0.237	0.99	12.3	-0.437	115.9	-0.454	
	0.0713	0.208	1.15	9.85	-0.591	126.2	-0.555	-
	0.0613	0.179	1.35	7.45	-0.7226	136.3	-0.65	-
	0.0513	0.150	1.6	5.45	-0.8163	144.7	-0.728	-
	0.0413	0.120	1.9	3.45	-0.8985	154.0	-0.811	-
	0.0313	0.091	2.26	2.05	-0.9454	161.0	-0.863	-
	0.0213	0.062	2.65	1.07	-0.9734	166.8	-0.911	-
	0.0113	0.033	3.4	0.35	-0.989	171.53	-0.948	-

TABLE VI

$l=100 \mathrm{~mm} ; ~ L=191.5 \mathrm{~mm} ; \lambda=0.53 \mu \mathrm{~m} I_{a}=15.1$ rel.units									
	$t_{h}^{\prime}, \mathrm{mm}$	$I_{\text {exp }}$	ψ°	S_{F}	S_{F}	I_{F}	I_{F}^{\prime}	$I_{F}^{\prime} / I_{\text {exp }}$	ε°
$\begin{aligned} & \min _{4} \\ & \max _{4} \\ & \min _{3} \\ & \max _{3} \\ & \min _{2} \\ & \max _{2} \\ & \min _{1} \\ & \max _{1} \end{aligned}$	0.5163	12.32	3.913	0.4632904	0.4275043	1.59	12.0	0.974	-
	0.4823	18.46	3.655	0.5447348	0.57458	2.508	18.93	1.026	-
	0.4453	11.92	3.375	0.447948	0.4215657	1.514	11.43	0.958	-
	0.4053	19.1	3.072	0.5628183	0.582046	2.622	19.8	1.04	-
	0.3583	11.18	2.716	0.4390712	0.4004868	1.413	10.67	0.954	-
	0.3063	20.55	2.321	0.571645	0.615639	2.823	21.32	1.037	-
	0.2453	9.41	1.859	0.400747	0.364105	1.173	8.85	0.941	-
	0.1563	26.47	1.185	0.611258	0.724905	3.597	27.15	1.026	-
	0.1513	26.45	1.147	0.5795113	0.7449974	3.563	26.9	1.017	-
	0.1413	25.5	1.071	0.5086403	0.7718233	3.418	25.8	1.01	-
	0.1313	24.15	0.995	0.4332594	0.7798542	3.184	24.04	0.995	-
	0.1213	22.05	0.919	0.3580786	0.769916	2.884	21.77	0.987	-
	0.1113	19.55	0.844	0.28729	0.744062	2.545	19.21	0.983	0.1
	0.1013	17.25	0.768	0.223031	0.704644	2.185	16.5	0.956	-
	0.0913	14.45	0.692	0.1666198	0.653859	1.821	13.75	0.952	-
	0.0813	12.3	0.616	0.1193176	0.594472	1.47	11.1	0.902	-
	0.0713	9.85	0.540	0.0812206	0.528780	1.145	8.64	0.877	-
	0.0613	7.45	0.4646	0.0522128	0.4596644	0.856	6.46	0.867	-
	0.0513	5.45	0.389	0.030697	0.386808	0.602	4.55	0.834	-
	0.0413	3.45	0.313	0.0160286	0.3122596	0.391	2.95	0.856	-
	0.0313	2.05	0.237	0.0069663	0.2368156	0.2245	1.695	0.827	-
	0.0213	1.07	0.161	0.002185	0.1609733	0.104	0.78	0.731	-
	0.0113	0.35	0.086	0.000333	0.085999	0.03	0.22	0.637	-

Taking into account the character of variation in $I_{e t} / I_{e}$, the effect considered is important only for small β. The reason of this is the propagation of the major part of the diffracted rays at small angles with the
initial direction which makes it possible to avoid the incidence of rays on the prism side and their subsequent reflection in those cases when β exceeds the value of these angles.

TABLE VII

$l=100 \mathrm{~mm} ; \quad L=191.5 \mathrm{~mm} ; \quad \lambda=0.53 \mu \mathrm{~m}$												
Band	$t_{\text {lcal }}, \mathrm{mm}$	$t_{l a}, \mathrm{~mm}$	$I_{s t}$	I_{a}	$a_{s t}$	a_{a}	$a_{s t}$	$I_{e t}$	$I_{s t} / I_{a}$	$I_{\exp } / I_{a}$	$I_{e t} / I_{e}$	β°
$\max _{1}$	0.155	0.160	32.17	16	5.672	4	0.836	0.7	2.01	1.748	1.684	0.135
$\min _{1}$	0.243	0.247	6.47	-	2.544	4	0.728	0.53	0.404	0.629	3.1	0.08
$\max _{2}$	0.306	0.308	26.37	-	5.135	4	0.568	0.322	1.648	1.351	3.07	0.049
$\min _{2}$	0.3585	0.361	7.97	-	2.823	4	0.588	0.346	0.498	0.748	4.74	0.019
$\max _{3}$	0.404	0.405	24.17	-	4.916	4	0.458	0.21	1.511	1.252	3.68	0.008

The explanation of the dependence of the axial illumination on the size and position of limiting slit on the basis of Fresnel's description leads to the statement about nonrectilinear light propagation. ${ }^{6}$ After establishing the true reason of this phenomenon, this statement become unconvincing.

REFERENCES

1. Yu.I. Terent'ev. Atm. Opt. 3, No. 9, 883-894 (1990).
(1989).
2. Yu.I. Terent'ev. Atm. Opt. 2, No. 11, 975-981 (1989).
3. G.T. Artamonov, et al., in: Tables of Fresnel's Integrals, edited by V.A. Ditkin (Izdat. Akad. Nauk SSSR, Moscow, 1953), 267 pp.
4. Yu.I. Terent'ev. Izv. Vyssh. Uchebn. Zaved. SSSR, Fizika, No. 12, 55-58 (1987).
5. S.E. Frish and A.V. Timoreva, A Course of General Physics (GITTL, Moscow, 1951), Vol. 3, 796 pp.
