ON THE DETERMINATION OF THE AVERAGE IMPACT PARAMETER IN THE RATCF MODEL

V.V. Zuev and A.I. Petrova

Institute of Atmospheric Optics, Siberian Branch of the Academy of Sciences of the USSR, Tomsk Received November 15, 1990

A procedure for deriving the average impact parameter $b_{av}(i, f)$ using a refined version of the Anderson-Tsao-Curnutte-Frost model is reported. It is shown that this way of determinating $b_{av}(i, f)$ has no appreciable effect on the accuracy of calculation of the line half-widths and lineshifts of molecules.

In our construction of a refined version of the Anderson—Tsao—Curnutte—Frost model (RATCF)^1 for absorption at the frequency $\omega_{fi}=E_f-E_i$ we used the average impact parameter $b_{av}(i,f)$. Let us examine its derivation. This parameter appears when integrating the real and imaginary parts of the differential collision cross section (S_2 and \tilde{S}_2) over the impact parameter in problems of the lineshift and line broadening. In order that the results of integration of the functions S_2 and \tilde{S}_2 over the impact parameter be independent of the method used (the Anderson—Tsao—Curnutte—Frost model^{2,3} or the Srivastava approach^{1,4}), the following equality must be satisfied:

$$S_{2t}(b(i,f),\upsilon(i,f),F_{Nt}(b(i,f))) = \frac{2S_{2t}(b(i,f),\upsilon(i,f),f_{Nt}(b_{av}(i,f)))}{h_{t}-2}, \tag{1}$$

which transforms into

$$f_{Nt}(b_{av}(i,\,f)) = \frac{(h_t-2)}{2}\,F_{Nt}(b(i,\,f))\;,$$

$$\tilde{f}_{Nt}(b_{av}(i, f)) = \frac{(h_t - 2)}{2} \tilde{F}_{Nt}(b(i, f)), \qquad (2)$$

where $\upsilon(i,f)$ is the average relative velocity of motion of the interacting molecules associated with the states i and f of the absorbing molecules, f_N is the nonadiabatic function derived before integrating the differential collision cross section over the impact parameter, F_N is the nonadiabatic

function derived after integrating S_2 and \tilde{S}_2 over the impact parameter, and h_t is the power of the impact parameter which enters into the functions:

$$S_2 \!\!=\!\! \sum_t \!\! S_{2t} \!\!=\!\! \sum \!\! \lambda_t \! / b^{h_t} \text{ and } \tilde{S}_2 \!\!=\!\! \sum_t \!\! \tilde{S}_{2t} = \sum \!\! \lambda_t \! / b^{\mathrm{h}_t}$$

where $1/b^{h_t}$ determines the explicit part of the impact parameter.

If in the definition of the parameters $k = \frac{b(i, f)}{t(i, f)} \Delta \omega$ we use the values k' = k + 0.7 and we take the increment Δb to be equal to $\frac{0.7 \cdot v(i, f)}{\Delta \omega}$, then

$$b_{av}(i, f) = b(i, f) + \Delta b \tag{3}$$

and Eqs. (1) and (2) are accurate to within 1-5% for each t-type of the interaction (see Figs. 1 and 2).

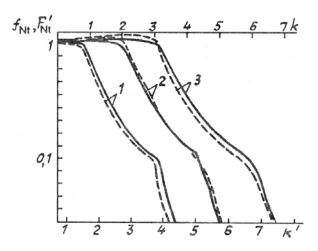


FIG. 1. The nonadiabatic functions f_t and $F_t^{'}$ for the three main interaction types: dipole—dipole (curve 1, t=1), dipole—quadrupole (curve 2, t=2), and quadrupole—quadrupole (curve 3, t=3). The solid lines stand for $f_{Nt}(k')$, the broken lines for $f_{Nt}(k) = \frac{h_t - 2}{2} F_{Nt}(k)$.

According to the RATCF approach the half—width parameter $\gamma\left(b(i,f),\,F_{Nt}(b(i,f))\right)$ is then replaced by $\gamma\left(b(i,f),\,\frac{2f_{Nt}(b_{av}(i,f))}{h_t-2}\right)$ with an error of not more than 1% (Fig. 1). In the calculations of the line center shift

$$\delta(b(i,f), \quad F_{Nt}(b(i,f)) \quad \text{is then replaced by}$$

$$\delta\!\!\left(b(i,f), \frac{2\tilde{f}_{Nt}(b_{av}(i,f))}{h_t-2}\right)\!\!, \quad \text{which results in a slight}$$

increase in the computational error (up to ~2–5%). However, the calculation of the lineshift in terms of the average shift $b_{av}(i,f)$ makes it possible to estimate the contributions of the third— and the fourth—order interaction to the line center shift, which may significantly exceed (by a few tens of percent) the computational error in the parameter δ .

Thus, the calculations of the relaxation parameter by the following formulas:

$$\gamma \left(b(i, f), \frac{2f_{Nt}(b_{av}(i, f))}{h_t - 2} \right) \text{ and } \delta \left(b(i, f), \frac{2\tilde{f}_{Nt}(b_{av}(i, f))}{h_t - 2} \right)$$

makes it possible to increase the information content without any appreciable effect on the computational accuracy.

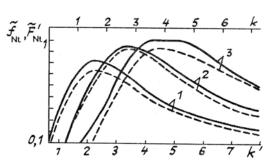


FIG. 2. The nonadiabatic functions \tilde{f}_t and \tilde{F}_t' . The notation is the same as in Fig. 1.

REFERENCES

- 1. V.V. Zuev and A.I. Petrova, Opt. Atm. **3**, No. 11, 1123–1138 (1990).
- 2. C.J. Tsao and B. Curnutte, JQSRT 2, 41 (1962).
- 3. Frost, J. Phys. B, Atom. Molec. Phys. **9**, No. 6, 1001 (1972).
- 4. R.P. Srivastava and H.R. Zaidi, Can. J. Phys. **55**, 533 (1977).