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A procedure for deriving the average impact parameter bav(i, f) using a refined 

version of the Anderson–Tsao–Curnutte–Frost model is reported. It is shown that this 
way of determinating bav(i, f) has no appreciable effect on the accuracy of calculation 

of the line half–widths and lineshifts of molecules. 
 

In our construction of a refined version of the 

Anderson–Tsao–Curnutte–Frost model (RATCF)1 for 
absorption at the frequency ωfi = Ef – Ei we used the 

average impact parameter bav(i, f). Let us examine its 

derivation. This parameter appears when integrating the real 
and imaginary parts of the differential collision cross section 

(S
2
 and S

∼

2
) over the impact parameter in problems of the 

lineshift and line broadening. In order that the results of 

integration of the functions S
2
 and S

∼

2
 over the impact 

parameter be independent of the method used (the 
Anderson–Tsao–Curnutte–Frost model2,3 or the Srivastava 
approach1,4), the following equality must be satisfied: 

 

S
2t(b(i,f), υ(i,f), FNt(b(i,f)))= 

2S
2t(b(i,f),υ(i,f),fNt(bav(i,f)))

ht–2 ,

 (1) 
 
which transforms into 
 

fNt(bav(i, f)) = 
(ht – 2)

2  FNt(b(i, f)) , 

 

f
∼

Nt(bav(i, f)) = 
(ht – 2)

2 F
∼

Nt (b(i, f)) , (2) 

 

where υ(i, f) is the average relative velocity of motion of 
the interacting molecules associated with the states i and f 
of the absorbing molecules, fN is the nonadiabatic function 

derived before integrating the differential collision cross 
section over the impact parameter, FN is the nonadiabatic 

function derived after integrating S
2
 and S

∼

2
 over the impact 

parameter, and ht is the power of the impact parameter 

which enters into the functions: 
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where 1/b
ht determines the explicit part of the impact 

parameter. 
 

If in the definition of the parameters k = 
b(i, f)
t(i, f) Δω 

we use the values k′ = k + 0.7 and we take the increment 

Δb to be equal to 
0.7⋅υ(i, f)

Δω
, then 

 

bav(i, f) = b(i, f) + Δb  (3) 

 
and Eqs. (1) and (2) are accurate to within 1–5% for each 
t–type of the interaction (see Figs. 1 and 2). 
 

 
 

FIG. 1. The nonadiabatic functions ft and F′
t
 for the 

three main interaction types: dipole–dipole (curve 1, 
t = 1), dipole–quadrupole (curve 2, t = 2), and 
quadrupole–quadrupole (curve 3, t = 3). The solid lines 

stand for fNt(k
′), the broken lines for 

F′
Nt

(k) = 
ht – 2

2 FNt(k). 

 
According to the RATCF approach the half–width 

parameter γ (b(i, f), FNt(b(i, f))) is then replaced by 

γ 
⎝
⎛

⎠
⎞b(i, f), 

2fNt(bav(i, f))

ht – 2  with an error of not more than 

1% (Fig. 1). In the calculations of the line center shift  
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δ(b(i, f), FNt(b(i, f)) is then replaced by 

δ
⎝
⎜
⎛

⎠
⎟
⎞

b(i, f), 
2f
∼
Nt(bav(i, f))

ht – 2 , which results in a slight 

increase in the computational error (up to ∼ 2–5%). 
However, the calculation of the lineshift in terms of the 
average shift bav(i, f) makes it possible to estimate the 

contributions of the third– and the fourth–order 
interaction to the line center shift, which may 
significantly exceed (by a few tens of percent) the 
computational error in the parameter δ. 

Thus, the calculations of the relaxation parameter by 
the following formulas: 

 

γ⎝
⎛

⎠
⎞

b(i, f), 
2fNt(bav(i, f))

ht – 2  and δ⎝
⎜
⎛

⎠
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b(i, f), 
2f
~
Nt(bav(i, f))

ht – 2   

 
makes it possible to increase the information content 
without any appreciable effect on the computational 
accuracy. 
 

 

FIG. 2. The nonadiabatic functions f
∼

t and F
∼
t
′. The 

notation is the same as in Fig. 1. 
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