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Reasons for the divergence of the profiles which have been reconstructed by solving 
the lidar equations are discussed. A stable algorithm for processing of multifrequency 
sounding of the atmosphere is proposed. The problem of estimating the optical parameters 
at the reference point is analyzed and a procedure for solving this problem is proposed. 
The possibilities of the procedure and algorithm are illustrated by numerical simulation . 

 
At present, the method of multifrequency laser 

sounding has found application in the solution of a wide 
range of problems in atmospheric optics and physics.1–2 
Increasing the number of operating wavelengths of the lidar 
enables one not only to determine the profiles of the optical 
characteristics of the medium, but also to reconstruct the 
microphysical parameters, which are important for different 
practical applications.3,4 In the single scattering 
approximation the relation between the returns P(λi, z) 

recorded by the receiving lidar system and the optical 
parameters of the atmosphere is described by the system of 
multifrequency sounding equations3 
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where z is the coordinate along the sounding path, λi is the 

wavelength, A(λi, z) is the instrument function, P0(λi) is 

the energy of the sounding pulse, and β
π
(λi, z) and σ(λi, z) 

are the profiles of the backscattering and extinction indices. 
In order to extend the relation between β

π
(λi, z) and 

σ(λi, z), the formula 

 

σ(λi, z) = ∑
 j

 
Cijβπ

(λi, z), (2) 

 

may be used, where Cij is the coefficient matrix which 

generally depends on the distance z. This matrix is 
calculated by the modified method of linear estimates5 or is 
assumed to be a matrix analog of the operator W 
recommended in Ref. 3. Moreover, it is assumed that an 
absolute calibration of the lidar can be performed in the 
course of the experimental investigations, i.e., the instrument 
function of this lidar is assumed to be well—known and the 
contribution of molecular scattering to be negligible. Then 
without loss of generality Eq. (1) taking account of Eq (2) 
reduces to the following system of equations: 
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where S(λi, z) = P(λi, z)z
2/A(λi, z)P0(λi). 

By solving Eq. (3) it is possible to reconstruct the 
profiles of the optical parameters β

π
(λi, z) and σ(λi, z) and 

susequently to calculate the necessary microphysical 
characteristics.3–5 However, as experience in processing 
field data  has shown, the solution of Eqs. (1) and (3) using 
the algorithm described in Ref. 3 is frequently rather 
difficult because of some disadvantages typical of the 
techniques used for solving the single frequency lidar 
equation, namely, instability and divergence of the 
reconstructed profiles of the optical parameters. The 
properties of the transcendental equation (or a system of 
transcendental equations for multifrequency sounding) are 
responsible for this effect. The profiles of the recorded lidar 
returns, as a rule, include the typical measurement errors. 
Moreover, in reconstructing the parameters β

π
(λi, z) and 

σ(λi, z), the need usually arises of emploing a priori 

information (for example, of the form (2)), which also 
includes such errors. The salient feature of the lidar 
equation and of the system of lidar equations consists in the 
fact that, in their solution, the coefficient of error 
amplification α(zp, z) in the first approximation is 

proportional to the value 
 

α(zp, z) ≈ T2(zp, z) = exp 
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where zp is the reference point. It can be seen from Eq. (4) 

that when z > zpα(zp, z) > 1 and at large optical thickness 

within the altitude range [zp, z] the coefficient of error 

amplification may reach values which will result in 
divergence of the solutions. That is why the technique for 
solving the single–frequency equation proposed by Klett6 is 
widely used. It consists in choosing the reference point zp at 

the end of the sounding path. Then for zp < z α(zp, z) < 1 

and with increase of the optical thickness within the 
altitude range [zp, z] α(zp, z) → 0. This makes it possible to 

eliminate the instability of the obtained solutions, however, 
the problem of an a priori estimate of the optical thickness of 
the sounding path within the altitude range [0, zp] now arises. 
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FIG. 1. Examples of the instability of the solutions caused 
by the error Δβ(λi, 0) at the reference point zp= 0. Curves 1 

and 2 represent model profiles of β(λi, z) and 3 and 4 

represent the reconstructed profiles. Δβ(λi, 0) = 0.5 (3 and 

4), 2 (5 and 6), and –2% (7 and 8).  
 

The complicated relation between the optical 
characteristics that enter into the system of the 
multifrequency sounding equations makes it impossible to 
give a comprehensive theoretical analysis of the reasons for 
the instability of the solutions even for two operating 
wavelengths (with the exception of several trivial particular 
cases). Therefore, let us now illustrate the foregoing 
discussion by the results of numerical experiment which are 
shown in Fig. 1. 

Here curves 1 and 2 indicate the model profiles of the 
backscattering index β

π
(λi, z) at λ1= 0.532 nm and 

λ2= 1.064 nm, respectively. Based on these profiles, the  

S–functions S(λi, z) were calculated from Eq. (3) and 

subsequently used for reconstructing the profiles of the optical 
parameters. With the aim of studying the performance of the 
algorithm, no random errors were introduced into S(λi, z). The 

spacing of the values of z at which this function was 
determined was sufficiently fine and the matrix Cij was 

assumed to be constant along the sounding path both for the 
direct and inverse problems. Curves 3 and 4, 5 and 6, and 7 
and 8 indicate the pairs of profiles β

π
(λ1, z) and β

π
(λ2, z) 

obtained by solving system of equations (3) at zp= 0. The only 

reason for the divergence of the profiles was the error of 
approximation at the reference point zp= 0, which was about 

+0.5, +2, and –2%, respectively. These small random 
deviations at the point zp= 0 were enough to cause the 

divergence of the reconstructed profiles as a result of the 
properties of the transcendental equations and operating at 
large optical thickness. The amplification of the random errors 
in determining S(λi, z) and the errors in assigning an a priori 

information occurs in the same way. 
The purpose of this paper is to develop a stable 

algorithm for processing data of multifrequency laser 
sounding of the atmosphere. In addition, this algorithm 
must be applicable both for large optical thicknesses and for 
a weakly burdened atmosphere, that is, we must have a 
criterion for an objective estimate of the optical thickness of 
the sounding path at the operating wavelengths within the 
altitude range [0, zp]. It is natural that starting from the 

foregoing discussion the algorithm is constructed according 
to the principle of choosing the reference point at the end of 
the investigated path. 

Without loss of generality we shall consider sounding 
paths which are uniformly range–gated with interval Δz 
(nonuniform range gating only results in a dependence of 
the quadrature formulas on the distance). In this case, 
instead of the system of functions S(λi, z), the matrix Sik, 

where i = 1, ..., n, k = 0, ..., m, where i is the current 
number of the wavelength and k is the current number of 
the strobe, is obtained from the experimental results. 
Approximating the integrals by the trapezoidal rule, system 
of equations (3) then assumes the following form: 
 

Sik=βikexp
⎩⎪
⎨
⎪⎧
–Δz

⎝
⎜
⎛
∑

j

 
 Cijβj0+∑

ν=1

k–1

 ∑
j

 
 2Cij βjm +

⎭
⎬
⎫

⎠
⎞∑

j

 
 Cijβjk , k > 0, (5) 

 

here βik = β
π
(λi, zk). (Equation (5) and the algorithm 

described below also remain unchanged in the case in which 
the coefficients Cij depend on the distance z). 

In order to simplify the discussion of the solution 
technique for solving Eq. (5), let us introduce the following 
notation: 
 

τik= ⌡⌠
0

zp

 σ(λi, z′)dz′ = ⌡⌠
0
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 Cij βπ

(λi, z′)dz′ 

 

is the optical thickness within the altitude range [0, zk] at 

the wavelength λi. In this case the relation  
 

Sik=βikexp(–2τik) (6) 

 

is valid. Moreover, let us denote 
 

ai(zk–1) = Sik–1exp
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The parameters ai(zk–1) can be calculated if Sik–1 are 

measured and the values of τik and βik are assumed to be 

calculated or assigned a priori. It immediately follows from 
Eq. (5) taking Eq. (7) into account that 
 

βik–1 = ai(zk–1)exp
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Equation (8) can be used to calculate an characteristics βik–1 

based on the iterative algorithm. That is, an approximation 

β
(0)
ik–1 is assumed to be available, which is then substituted 

into the right side of Eq. (8). After that β
(1)
ik–1 is calculated 

and subsequently used to calculate β
(2)
ik–1. The procedure is 

repeated untill the difference between the values β
(p)
ik–1 and 

β
(p–1)
ik–1  becomes negligible and then βik-1 = β

(p)
ik–1. It is usually 

possible to obtain the solution of Eq. (8) within a few 
iterations. For the iterative algorithm to converge, it is 
necessary that the first derivatives of the right side of the 
equation with respect to βik–1 be less than unity.3 This is 

equivalent to the requirement that the optical thickness of 
the interval of range–gating Δz remain neglegible. 

The main point of the algorithm for processing 
multifrequency sounding data consists in the following: the 
values of the backscattering indices βip at the reference  
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point zp = zm are assigned a priori. Taking βim= βip with an 

account of Eq. (6), the optical thicknesses τim are determined. 

The parameters ai(zm–1) are then calculated from Eq. (7) and 

the values of βim–1 are determined on the basis of the iterative 

algorithm (8), which allows to calculate τi(zm–1) taking into 

account Eq. (6). Given that the optical characteristics βim–1, 

τi(zm–1), and Sim–2 are available, we may proceed to the 

calculation of βim–2 and τi(zm–2) in an analogous way. The 

above procedure is repeated for all zk in the reverse sense with 

k starting from zk= zm= zp and ending at zk = z0. 

In the described algorithm, the question of an 
objective estimate of βip and τi(zp) remains open. It is 

natural that the result of reconstructing profiles of the 
optical characteristics over the entire sounding path depends 
on the a priori choice of the indices of the backscattering 
indices βip at the reference point zp. The absolute 

calibration of the lidar system permits us to eliminate the 
indicated disadvantage. In this case the condition Si0= βi0, 

which is used for the correction βip, should be satisfied with 

an accuracy not worse than the measurement accuracy. 
Let the profiles βik be calculated based on the proposed 

algorithm for some β
(0)
ik . The deviation of the parameters 

γi= Si0/βi0 from unity may charactirize the accuracy of the 

choice of the characteristics β(0)
ip. If the condition  

 

∑
i

 
 ⏐γi– 1⏐ < ε (9) 

 
is satisfied, where ε is some small preset value, i.e., the 
calculated results agree with the available experimental 
data to within a preset error, then there is no reason to 

change the parameters β
(0)
ip  and the calculated profiles βik 

yield the final result of solving system (3). If condition 

(9) is not satisfied, β
(0)
ip  must be corrected according to 

the formula 
 

β
(t)
ip  = γiβ

(t–1)
ip  (10) 

 

for t = 1. The new values of β
(1)
ip  are then used for 

repeated calculation of the profiles of the optical 
parameters βip in accordance with the algorithm described 

above. The calculations by the iteration loop over t, 

where t is the iteration number, with β
(t)
ip  being corrected 

according to formula (10) are repeated until condition (9) 
is satisfied. 

For the case of single–frequency sounding, if we 
neglect the errors in the measurement of S(λ, z) and the 
error in assigning the a priori information, it is possible 
to show that the deviations Δβ0 of the solutions obtained 

from the true values of β0 increase monotonically when 

the errors Δβp introduced into βp vary from –βp to ∞. A 

numerical analysis of the dependence of Δβi0 on the errors 

Δβip introduced into βip for the case of multifrequency 

sounding also shows that the function Δβi0= F(Δβip) is 

smooth and Δβi0 = 0 if Δβip= 0 for all i. Therefore, the  

iterative algorithm (10) for correcting βip converges rather 

rapidly . 
Here it is necessary fo note the following important 

remark. The value of the parameter ε in Eq. (9) cannot be 
chosen infinitely small. In the general case of single–
frequency sounding it can be rigorously shown that as 
ε → 0, the iterative algorithm for calculating the 
corrections for βip is equivalent to the choice of the 

reference point at z = 0 with all the undesirable 
consequences discussed above. The situation is similar for 
multifrequency sounding. The value of the parameter ε is 
determined by the number of operating wavelengths and 
by the level of the measurement errors. The main idea of 
correction (10) consists exactly in performing the 
calculations on the basis of the available experimental 
data taking into account the possible random and 
systematic errors.  
 

 
 

FIG. 2. Numerical simulation of processing of bifrequency 
sounding data with the help of the proposed algorithm at 
τ g 1; 1), 2) model profiles of β(λi, z), and 3), 4) the 

reconstructed profiles. 
 

To illustrate the performance of the proposed 
algorithm, let us consider the results of some numerical 
experiments. Figure 2 shows the results for small optical 
thicknesses of the sounding path (τ < 1). Curves 1 and 2 
represent the model profiles of the backscattering index 
β

π
(λi, z) at the wavelengths λ1 = 0.532 nm and 

λ2 = 1.064 nm, respectively. Based on these profiles, the 

characteristics Sik were calculated from Eq. (3) (the 

matrix Cij was assumed to be constant on the sounding 

path for both the direct and the inverse problem). 
Relative errors with a 3% standard deviation were then 
introduced into Sik with the help of a normally 

distributed random number generator (at some points the 
relative errors amounted to 8–10%). The thusly obtained 

matrices S
*
ik, were then used for reconstructing the 

profiles of the optical parameters βik. The solution of the 

inverse problem is shown in Fig. 2 by curves 3 and 4. The 

starting preset values of β
(0)
ik  were chosen to deliberately 

exceed (by a factor of 10) the values of βp(λi, zp) derived 

from the model profiles (β
(0)
ip = 0.08, where i = 1 and 2). 

Nevertheless, a quite acceptable result was obtained for 
ε = 0.01 within 30 iterations. The deviations of curves 3 
and 4 from the corresponding profiles 1 and 2 are due to 
the random errors introduced into Sik. 
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FIG. 3. Numerical simulation of processing of data of 
bifrequency sounding with the help of the algorithm at τ g 5: 
1), 2) model profiles β(λi, z) and 3), 4) reconstructed 

profiles. 
 

An example of the performance of the algorithm at large 
optical thickness (τ g 5) of the sounded path is shown in 
Fig. 3. The technique of the numerical experiment was 

analogous to that shown in Fig. 2 (namely, β
(0)
ip = 0.08, where 

i = 1 and 2, and ε = 0.01). The only difference consisted in 
the values of the optical parameters derived from the model 
profiles 1 and 2. Curves 3 and 4 show the result of solving the 
inverse problem (condition (9) was satisfied already in the 

second step of the iteration algorithm   over β
(1)
ip ). 

First of all, appreciable discrepancies between the 
reconstructed and model profiles manifest themselves at the 
end of the sounding path. These discrepancies are of a 
fundamental character and it is necessary to discuss them in 
detail. As has been already noted, for the case of single–
frequency sounding when z < zp the coefficient of error 

amplification α(zp, z) is less than 1 and vanishes as the optical 

thickness increases within the altitude range [zp, z], i.e., at 

large τ gross errors at the reference point lead to small errors 
at zk = z0 and condition (9) is satisfied automatically. As the 

results of numerical calculations show, a similar situation 
obtains in the case of multifrequency sounding. The difference 
consists in the fact that the relation between the values βip at 

different wavelengths also plays an important role, while 
α(zp, z) decreases at a higher rate as τ increases. In the case  

shown in Fig. 3 condition (9) is already satisfied after the 
first correction according to formula (10), while the 
parameters γi become virtually equal to unity. As a result, 

the obtained solution of the inverse problem completely 
agrees with the "experimental data" and there are no 
objective grounds for correcting the reconstructed profiles of 
the optical parameters. Thus, in the processing of the 
sounding data at large τ a "dead zone" has arisen, in which 
the errors in estimating the values of the optical parameters 
are gross and cannot be eliminated based on the lidar data 
alone. In addition to the possibilities noted above, 
increasing the number of operating wavelengths and 
broadening the spectral range of sounding makes it possible 
to reduce "the dead zone" and thereby to improve the 
quality of the information. To summarize, we recommend 
that sounding of dispersed media be performed in as wide a 
spectral range as possible at more operating frequencies and 
that an attempt should be made to record the lidar returns 
from the farthest distances. The latter enables one to 
remove "the dead zone" thereby increasing the range of 
action.  

In conclusion we note that the technique for processing 
multifrequency sounding data described here can be 
generalized, without any fundamental difficulties, to the 
case in which molecular scattering is taking into account in 
addition to aerosol scattering. The optical parameters of 
molecular scattering derived from the data of meteorological 
measurements and calculated according to the standard 
model of the atmosphere enter into both β

π
(λi, z) and 

σ(λi, z) additively. Therefore, it is not difficult to take into 

account the molecular components in the above given 
formulas. 
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