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A correction of nonstationary atmospheric aberrations of the optical 
system with phase conjugation taking into account the dynamic characteristics 
of flexible mirrors has been examined. Suboptimal laws of control with the 
help of mirrors in correcting the phase distortions on the basis of the first ten 
Zernike polynomials have been analyzed. 

 
An increase in "the speed of adaptive optical systems 

operating under conditions of the turbulent atmosphere is 
the urgent problem.1 One of the methods of solving this 
problem consists in the improvement of the characteristics 
of control circuit for flexible mirrors. 

"Quasistatical" and dynamic correction systems2 are 
distinguished depending on characteristic time of change in 
atmospheric aberrations. In the first case an investigation of 
static deformations of mirrors is enough, but in the second 
it is necessary to regard the wavefront corrector as an 
inertial system with distributed parameters.4,5 Owing to the 
complexity of the latter problem, the algorithms for control 
with the help of flexible mirrors and dynamic characteristics 
of the adaptive optical systems are often studied 
independently. The dynamic behavior of atmospheric 
aberrations is usually modelled with the help of the Zernike 
polynomials,6–8 and the control system is constructed for the 
problem of damping the eigenmodes of oscillations of a 
flexible mirror.5 

This paper is concerned with-the analysis of the 
dynamic correction of atmospheric aberrations with the help 
of flexible mirrors in adaptive systems withrphase 
conjugation. The following questions are studied:  
1) numerical calculation of the linear forming filter for the 
description of dynamics of phase distortions;  
2) choice of a wavefront corrector model; 3) synthesis of the 
suboptimal control with the help of adaptive mirrors. 

1. Let us consider the first problem. The correlation 
functions of the expansion coefficients ξ1(t) of the 
wavefront ϕ(r, t) in the Zernike polynomials Z1(r) for the 
Kolmogorcv model of atmospheric turbulence are defined by 
the following well–known expressions:8 
 

(1) 

 
where τ = 2Vt0/D, D is the aperture diameter, (V, Ψ) are 
the polar coordinates of an average velocity of 
inhomogeneities transfer, r0 is Fried's correlation radius, Jk 
are the kth order Bessel functions, C1 are the normalization 
constants, n is the order of the polynomial, m is its angular 
frequency, the sign "+" corresponds to even i, and the sign 
"–" — to odd. 

The expressions (1) makes it impossible to use the 
methods for design of the optimal linear tracking systems.9  

Therefore with an account of the typical profile of the 
functions K1(τ) we shall approximate them by the following 
expressions: 

 

 (2)
 

 (3) 

 

that provide for the adequate accuracy of approximation and 
are relevant for the linear forming filters of the lowest orders10 

 

⋅

ξ1 + α1ξ1 =ξ1 i ≤ 3,  
 

 (4) 

 

Here 
⋅

ξ1 = 
d
dt ξ1 and ξ1 is the white noise with the spectral 

functions 
 

 (5) 

 

We shall determine the constant coefficients α1 in 
Eq. (2) by minimizing the errors ε1 for some time intervals 
[0, T1]. 

 

 (6) 

 

In addition we shall assume that the difference between 

the functions K1 and 
∼

K1  for τ > T1 affects only the lowest 
frequencies of atmospheric aberrations, which do not 
make significant contribution to the dynamic error of an 
adaptive system. We shall calculate the coefficients α1 
and γ1 in the Eq. (3) according to the well–known 

method10: by setting K1(T11) = 
∼

K(T11) = 0 for the first 
root T11, we shall derive α1 = –γ1 ctg γ1 T11; the 
remaining parameter γ1 is determined by solving the 
problem of minimizing the errors (6). 

The calculated values of the coefficients α1 and γ1 in 
the case in which the direction of the velocity of 
inhomogeneities transfer is aligned with the axis Ψ = 0 
are presented in Table I, where the designation  
σ1 = <ξ2

1 >(r0/D)5/3 is used. 
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TABLE I. 
 

i 2 3 4 5 6 7 8 9 10 
σ1 0. 449 0.449 0.023 0.023 0.023 0.006 0.006 0.006 0.006

α1 0. 13 0.08 1.64 1.02 2.62 1.94 0.99 2.49 0.99

γ1 – – 1.88 2.04 0 1.80 3.79 3.24 3.28

T11 – – 1.2 1.0 – 1.3 0.5 0.7 0.7 

T1 20 20 4 4 4 2 2 2 2 

ε1 0.09 0.02 0.003 0.02 0.02 0.002 0.05 0.09 0.03

 

2. Let us turn to the problem of description of the 
adaptive system model with phase conjugation. We shall 
study the system in which the measuring device performs 

the expansion of the residual spatial error ϕ – 
∼

W (
∼

W is the 
correcting function) in a series of the first ten Zernike 
polynomials Z1 : 
 

 
 

where a1 are the measured signals. We shall assume that the 
correction of the average phase and the average wavefront tilts 
to be performed with an adequate accuracy with the help of an 
additional mirror which has higher more high resonance 
frequencies in comparison with the frequencies of the flexible 
mirror. In this case we shall represent the correcting function 

∼

W in the form 
3

1 1

1

( ) ( ) ( , )

i

W a t Z r W r t

=

+∑�
� + W(r, t), where 

W is the surface of the circular flexible mirror described by 
the well-known equation2 
 

 

 (7) 

 

Here σm is the mass of a unit surface, μ is the damping 
coefficient, q is the controlling load, and L is the operator 
of statical deformation of the mirror. For plate mirrors 
L = Gm∇4, where Gm is the cylindrical stiffness. In addition 
for i ≤ 10 the conditions Lzi = 0 are satisfied; therefore it is 
expedient to take the controlling actuators out of the limits 
of the working aperture Ω when the problems of the optimal 
quasistatical correction of the lowest–order aberrations are 
solved.3 Such a position of the actuators makes it impossible 
to realize the effective suppression of high spatial 
frequencies of the mirror oscillations5; therefore it is 
expedient to use the passive methods of damping the 
highest–order modes of the oscillations in systems of 
correction of the lowest–order aberrations. In addition we 
shall assume that the band of working frequencies of the 
system Δν does not exceed the lowest eigenfrequency of the 
mirror λ1 

 

Δν < λ1 (8) 
 

In this case we shall represent the controlling load in the 

form q(r, t) = 
10

1 1

1

( ) ( )

i

U t q r

=

∑ , where U1 are the controlling 

signals, q1(r) is the statistical distribution of the forces 
exerted by the actuators in the process of approximating the 
polynomials Z1(r)(U1

st = 1, LZ1 g q1, and r ∈ Ω). Since the 
circular polynomials Z(i) (I = 4, 10) are independent 
harmonic functions of the angle θ (Ref. 1), the correction 
channels corresponding to them may be studied separately  

taking into account only oscillations modes Vj(r) with the 
same angular dependence in the expansions of the functions 
W(r, t) and q1(r) (i ≤ 10). In so doing, Eq. (7) for every 
control channel may be rewritten in the form (we shall omit 
the index i everywhere) 

 

 (9) 

 

where

 

It is quite clear that in the quasistatical approximation the 
coefficients Cj are equal to the values fj

st (Ust = 1). 
Therefore we shall determine them by minimizing the error 

of the static approximation  on the 

working aperture (here the coefficients K1 are introduced in 
order to distinguish the aberrations Zm, m ≤ 3). The 
simplest expressions for Cj correspond to the case in which 
the mirror zone coincides with Ω (for example, in the plate 
mirrors with free edge). With an account of orthonormality 
of the oscillation modes2 (V1, Vj) = δij we can derive 
 

Cj = (z, Vj) + 
3
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 (10) 

 

where (Zi, Zj) = S0 δij and S0 = π D2/4. 
Thus, equation (9) and the measurable error of 

correction 
 

 (11) 

 

define the linear model system for compensation of the 
function ξ(t) ⋅ Z(r). 

3. Let us study the problem of synthesis regulator 
U(a). According to the methods of the linear system theory 
for automatic control we shall change over from the 
equations (9) and (11) to their spectral representation 
 

,(12) 

 

where A1(s) = (σms2 + 2 μs + λ2
j) S0/Cjλj

2 (z, Vj), s designates 
the Laplacian operator. It is expedient to distinguish the 
transfer function A1(s) owing to the foregoing assumption (8). 
If this assumption is correct, the resonance factor may be 
taken into account only in this term. Meanwhile, the 
synthesized system will appear to be optimal only with respect 
to the lowest-order modes of every channel. 

Then the equations of the tracking system (4) and (11) 
will assume the form 
 

, (13) 

 

where , and 
ξ is the white noise with the spectral density Sξ = const. 

It is well known9 that the regulator which minimize 
the functional 
 

, (14) 
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with the weighting factor M2 is defined by the expression 
 

, (15) 

 
Here the polynomial G(s) and the fractional function M+(s) 
are to be found with the use of conditions 
 

 

 (16) 

 
where M(s) is the proper fraction with poles in the right half–
plane. 

The regulator (15) was synthesized with an account of 
the well known spectral function of the correctable random 
process. In read situations such an information may be absent. 
In this case it is usually assumed that B(s) = A1(s). This leads 
us to the simpler expression for 
 

 (17) 

 

It should be noted that such a regulator corresponds to 
the stabilizer synthesis problem for the perturbations of the 
white noise type9. 

Expressions (15) and (16), that have been obtained 
here, satisfy the well–known conditions of stability for 
tracking systems with respect to the small perturbations 
of the parameters9. In addition, the variances of the 
values  
 

 (18) 

 

where Wa(s) = [A1(s) –D*(s)]B(s)/A1(s), can be easily 

represented in the analytic form11 here. 
We shall present the calculational results on the 

characteristics of the adaptive system with the flexible plate 
mirrors with free edge. The eigenfrequencies λj

2 and 
eigenforms Vj(r) of the circular plate with the Poisson 
coefficient being equal to 0.33 are presented in the 
referencebook.12 Table II includes the calculated values of 

. Here, we have obtained the  

inequality |1 – Cj/(Z, Vj)| ≤ 0.01, which indicates that there 
exists a practical possibility of neglecting the second term in 
Eq. (10). It is evident from the Table that we may set  
∼
U (s) g U(s) in Eq. (12) for operating frequencies of an 
adaptive system, which satisfy the condition by virtue of 
smallness of the values Cj/(Z, Vj) S0 (j ≥ 2). 

The calculated dependences of the relative correction 
error <a2>/<ξ2> on the energy consumptions for the 

control <
∼
U 2>/<ξ2> at μ = 0 are presented in Fig. 1. The 

solid curves correspond to the regulator (15), the dashed 
curves — to the regulator (17), and the parameter  
K = k/[4σ1/2

m /D2G1/2
z ] = 0.5 DV(σm/G3)1/2. Hence we 

may draw two conclusions. First, taking into account the 
spectral functions of atmospheric correctable aberrations 
we can decrease the correction error approximately by a 
factor of 1.5–2.0. Second in these systems we may use 
optimal regulators of stabilization systems with some 
additional consumptions for a control process. 

In conclusion we shall make some remarks about the 
synthesis of a control in correction systems with operating 
frequencies which exceed the lowest frequencies of 
oscillations of flexible mirrors. In this case for effective 
suppression of free resonance oscillations of a mirror it is 
necessary to place control actuators along the entire surface 
of a mirror and to synthesize a regulator for the starting 
model of system (9) and (11). The method for synthesis of 
optimal regulators according to the criterion of the 
generalized performance enables us to write the law of the 
control directly in the explicit form omitting all the 
intermediate calculations performed on the basis of standard 
techniques. It can be shown that for the problem of 
stabilizer synthesis the minimization of the functional of the 
generalized performance 
 

 (19) 

 
is achieved with the help of control in the following form: 
 

, (20) 

 
where k1j

2 and k2j
2 are the weighting coefficients. 

 
 
TABLE II. 
 

 (D/2) (λj G1/2
z )1/2 

 
Cj(Zi, Vj)/S0 

i/j 1 2 3 4 5 1 2 3 4 5 
 

4 3,0 6,2 9,4 12,5 15,7 0,986 0.013 10–3 2,3⋅10–4 7,2⋅10–5 
5,6 2,3 5,9 9,2   0,998 0.0018 8⋅10–6   
7,8 4,6 7,7 10,9 14,1 17,2 0,939 0.047 6,5⋅10–3 1,8⋅10–3 5,6⋅10–4 
9,10 3,5 7,3 10,6   0,992 0.0069 10–4  
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FIG. 1. Dependence of the relative correction error on the energy consumptions for the control process:  
1) k = 3; 2) k = 5; 3) k = 7; 4) k = 10, 5) k = 12; 6) k = 15; 7) k = 18. 
 

The methods of solving the more general problems of 
synthesis of optimal control with the help of minimization 
of functional (14) performed by linear tracking systems of 
the form (4) and (9) for the conditions of deficient 
observational information are described in Ref. 14. All these 
methods require solving the nonlinear matrix Riccati 
equation. This fact significantly increases the length of 
computations. 
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