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Based on the use of numerical simulating, the propagation of 
hypergaussian and hypertubular beams in a subsonic gas flow is analyzed. It is 
shown that the profiled light beams experience much less nonlinear distortions. 
The behavior of the density perturbation profiles of a medium in the direction 
of the medium movement is shown to be nonmonotonic. Certain differences in 
the propagation of two-dimensional and slit-shaped beams are discussed. 

 
The papers devoted to numerical studies of the beam 

thermal self–action in a moving nonlinear media mostly 
dealt with the beam propagation under conditions when 
ν/νs n 1, where ν is the velocity of transverse movement of 
the medium, and νs is the sound speed. The thermal 
blooming for ν/νs g 1 has been discussed only in a few 
papers1–8 and, as a rule, for Gaussian beams. For example, 
in Refs. 1–3 the great importance was assigned to the 
analysis of the density perturbations of a medium while in 
Ref. 4 the thermal blooming of a slit-shaped beam was 
analyzed. Meanwhile it is known that the profiled beams 
can experience much less distortions than the Gaussian 
beams. Therefore, it seems to be useful to study the 
propagation of such beams in the subsonic gas flow. In this 
paper we present a numerical study of thermal blooming of 
profiled light beams in a medium with thermal nonlinearity 
under conditions when the velocity of the medium 
movement is close to the sound speed. 

 
PROBLEM FORMULATION AND METHOD OF 

NUMERICAL SOLUTION 

 
As is well known, the process of the beam thermal 

self–action in a moving medium is described by a system of 
dimensionless equations5 
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Here functions A(z, x, y) and ρ(z, x, y) are the normalized 
complex amplitude of radiation and density variation of the 
ambient medium, respectively. The coordinate z coincides 
with the direction of beam propagation, x and ó are the 
coordinates perpendicular to z, Δ⊥ = ∂2/∂x2 + ∂2/∂y2, α is 
the coefficient equal to the ratio of the initial beam power 
to the characteristic power of the self–action, M is the 
Mach number (0 ≤ M < 1), and Lz, Lx, and Ly are the 
boundaries of the beam region in transverse and 
longitudinal coordinates, respectively. 

The system of consistent equations (1) is solved under 
the following initial and boundary conditions: 
 

 

 
 (2) 

 
As can be seen from expressions (1) and (2) the power of 
propagating beam remains constant. 

Let us now introduce a new variable ϕ = ∂ρ/∂x and 
derive Eqs. (1) and boundary conditions (2) for the 
characteristics A, ρ, and ϕ. Since this procedure is quite 
simple, we will omit new equations. To solve this problem 
we shall use the pseudo–spectral symmetric finite–
difference scheme, which is considered to be conservative in 
the sense that the total beam power obeys the power 
conservation law in the finite–difference approximation. 
Below we present a short description of this scheme, since 
the construction of the methods of numerical calculations 
makes the basis of numerical simulation widely used in 
atmospheric optics studies. 

Let us denote the finite–difference analogs of A, ρ, and 
ϕ by Ah, ρh, and ϕh, respectively. Let also these values be 
defined at the nodes of the grid ω = ωz × ωx × ωy, where 
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Let us now represent Ah and ϕh in the form of a discrete 
Fourier transform 
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The coefficients Ahk and ϕhk are derived from solving the 
finite–difference problem 
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After finding ϕh from system (4) we can find ρh from a 

formula ρh = ⌡⌠
0

x

 ϕh(ξ) dξ. Since scheme (4) is nonlinear, the 

iteration procedure is used when we proceed to a new z 

layer. Let 
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system (4) using Eq. (5) we can find 
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equality of system (3), we can find 
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Let us now write the first equation of system (4) in the form 
 

 
 

It should be noted that if solution (3) is valid, the 
conservation of the finite–difference analog of the beam 
power at the nodes of the grid takes place. One can readily 

show this multiplying hkA
⎯⎛ ⎞

⎜ ⎟
⎝ ⎠

*
 the first equation of system 

(4) and then summing over all k and taking the real part of 
the resulting expression. 
 

RESULTS OF NUMERICAL CALCULATIONS 

 
Now. we proceed to the description of the 

computations following scheme (3)–(5). As was already 
mentioned above, we studied the thermal blooming of 
profiled laser beams, viz. hypergaussian and hypertubular 
beams. The amplitude distribution at the inlet into the 
nonlinear medium was taken to be 
 

 
 

and 
 

 
 

where J = 1 corresponds to Gaussian and hypergaussian 
initial beam profiles and J = 0 — to tubular and 
hypertubular beams. 

The computer calculations were made for moderate beam 
power (α ≤ –100) and the parameters of the propagation path 
Lz = 0.2, Lx = Ly = 12, and M = 0, 0.5, 0.7, and 0.9. The  
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process of simulation involved the analysis of evolution of the 
position of the beam's center of gravity along the x axis 
 

 
 

the peak intensity Im = 
x

 max  ⏐A(x)⏐2 and its position xm 

on the x axis, and the x–components of the beam radius 
 

 
 
These parameters and the distributions of the intensity and 
the medium density were analyzed as a function of the 
parameter M, i.e., of the velocity of the medium movement. 

Some of the most typical calculated results (e.g., for 
α = –100) are presented in Figs. 1–3. As follows from 
Fig. 1a there occurs an increase of the beam's center of 
gravity shift from its position Xcx for M = 0 with the 
increase of the velocity of the medium movement. The shift 
becomes larger if the parameter M is above a certain critical 
value Mcr determined by the initial beam profile. Thus, for 
Gaussian and hypergaussian (m = 6) beams Mcr = 0.6 and 
0.7, respectively, while in the case of tubular and  

hypertubular profiles the position of the beam's center of 
gravity changes insignificantly as the parameter M increases 
up to 0.7. It should be noted that the use of profiled beams, 
as in the case of slow movement of the medium allows one 
to decrease the shift of the beam's center from the axis of 
propagation. The efficiency of changing over to the profiled 
beams increases with increase of M. Thus, the value ⏐Xcx⏐ 
of the Gaussian beam is more than 3 times greater than the 
value |Xcx| for a hypertubular beam for M = 0.9. In addition 
it is important to note that the above dependence of Xcx on 
m becomes well–pronounced with the increase of the 
propagation path length (we have made calculations at z as 
great as 0.32). 

Let us now analyze the dependences of the peak beam 
power and its coordinate on the velocity of the medium 
movement (for example, at the cross section z = 0.2). As 
follows from the numerical calculations, the peak intensity 
of the Gaussian beam first slightly (by a factor of 1.07) 
increases with the increase of M (up to 0.6) and then 
remains practically constant. However, the peak intensity of 
a hypergaussian beam at this cross section is greater than of 
a Gaussian beam for not only identical but also different 
values of the parameter M. It is important to emphasize 
that the peak intensity Im of a beam with m = 6 
monotonically increases with the increase of M, and for 
M = 0.9 it is 1.25 times above the peak intensity which is 
realized for slow medium movement. At the same time, the 
maximum value of the hypergaussian beam intensity is 1.5 
times greater than Im of a beam with the Gaussian profile at 
the inlet into the medium. 
 

 

 
 
 
 
 

 
 

 
FIG. 1. Beam's center of gravity (a), coordinates of the 
intensity peak (b), and the x–component of the beam 
radius (c) as functions of the ratio of the velocity of the 
medium movement to the sound speed at the cross section 
z = 0.2. Solid curves represent the data for initially 
Gaussian beams, dashed lines for tubular ones. The values 
of the parameter m are shown near the curves. 

 

The same dependences of Im on M are realized in the 
case of tubular beams propagation. But in contrast to the 
Gaussian beams, the intensity of tubular beams 
monotonically increases with the increase of M. Thus, the 
value of Im observed for M = 0.9 at a cross section 
z = 0.2 is 1.15 times greater than the corresponding value 
of Im for slow medium movement. The decrease in the 
intensity of the hypertubular beam with m = 6 is equal to 
that for the intensity of a beam with the tubular profile 
at the inlet into the medium. On the whole, the intensity  

of tubular beams can be 1.15–2 times above the peak 
intensity of Gaussian beams (depending on the value of 
the Mach number and the beam profile). Therefore, a 
change over to an initially tubular beam profile is 
advisable also from the view point of increasing the light 
intensity on the detector. 

It should be noted that with another cross sections 
along the propagation path there can occur quite different 
situations when the peak intensity of a hypertubular beam 
will be significantly greater than the value Im of the  
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initially tubular intensity distribution. For example, at z = 0.1 
for and M = 0.9 the value Im with m = 6 is about 1.8 times 
greater than the value Im with m = 2. This is caused by the 
fact that hypertubular and tubular beams are focused onto 
different distances. Therefore, one can focus tubular beam onto 
any given cross section in the nonlinear medium. 

Let us now analyze the dependence of the position of 
the peak intensity coordinate xm on the velocity of the 
medi-um movement (Fig. 1b). As can be seen from the 
figure, the position of the peak intensity shifts in the 
direction counter to the medium movement. In addition xm 
is substantially different from the value which is realized 
under conditions of slow medium movement. The difference 
becomes noticeable already with M = 0.6 for the Gaussian 
beams, with M = 0.5 for hypergaussian beam, with M = 0.7 
for tubular beams, and only with M = 0.85 for 
hypertubular beams. It cam be easily seen that the 
coordinate of the intensity peak of a hypertubular beam 
remains constant in a wide range of the velocities of the 
medium movement and increases only at the velocities close 
to the sound speed. 

The analysis of the beam radii along the x axis 
(Fig. 1c) shows that the velocity of the medium movement 
has less of an effect on the tubular beams than on the 
Gaussian beams. It should be noted also that at large values 
of the Mach number (M = 0.7–0.9) the tubular beam 
(m = 2) has the smallest radius, and the parameter M has 
the least effect on the hypertubular beam with m = 6. 

The analysis of the medium density perturbations and 
beam intensity distributions in a plane ó = ó0 (i.e., at the 
beam center along the ó axis, has shown that, as in 
Refs. 1–3, the profiles ρ along the x axis for the Gaussian 
beams have the zones of compression (ρ ≥ 0) located before 
the center of the beam shifted in the windward direction, 
and the zones of rarefaction (ρ < 0) located behind the beam 
center in the direction of the medium movement. With the 
increase of a distance of the beam propagation in the 
nonlinear medium a decrease of the density perturbation 
amplitude occurs, and the transitional zone between the 
compression and rarefaction zones broadens. As the 
parameter M increases a monotonic increase in the medium 
density perturbations is observed. However, the dependence 
of the position of the discontinuity of density on the 
parameter M is nonmonotonic: first its coordinate along the 
x axis increases (if M ≤ 0.75), and then it decreases. It 
should be noted that the nonlinear character of the Gaussian 
beam propagation in the nonlinear medium manifests by the 
asymmetry in the temporal behavior of the peak intensity 
and by the appearance of only one maximum. 

The situation changes in the case of a hypergaussian 
beam with m = 6. As was mentioned above, in this case the 
shift of the beam's center from the propagation axis is 
smaller that, in turn, results in stronger (e.g., at the cross 
section z = 0.2) density perturbations which are less shifted 
from the beam's center and exhibits narrower the 
transitional zone. As a result, the leading edge of the pulse 
(with respect to the movement of the medium) is in the 
region of optically more thick medium that, in turn, causes 
the formation of aside maximum of the beam intensity, i.e., 
there appears a subbeam. However, the peak intensity in the 
subbeam is much lower than in the main maximum. The 
same behavior is observed with the trailing edge of the 
pulse that results in much greater asymmetry of the main 
subbeam in comparison with the case of a beam with the 
Gaussian intensity distribution at the inlet into the medium. 

A more complicated behavior of the density perturbations 
and the beam intensity profile evolution takes place in the case 
of propagation of the tubular beams. First, the density  
 

perturbations induced by the tubular beam are approximately 
1.5 times stronger than those appearing in the process of 
propagating the Gaussian beams. Second, for M ≥ 0.5 
nonmonotonic dependence of ρ on x is realized in the region 
ρ ≥ 0 (the dashed and dot–dash lines in Fig. 2 marked by 
figure 2). It should be noted that ρ(x) increases with a 
different rate with increase of M, and there appears only one 
maximum. The medium cross section, at which several 
maximums of ρ appear, is determined by the initial profile of a 
beam and by the Mach number. 
 

 
 

FIG. 2. The profiles of the medium density perturbations at 
the cross section z = 0.2 in a plane ó = y0 for the initially 
tubular and hypertubular beams for M = 0 (solid lines), 
M = 0.7 (dashed lines), and M = 0.9 (dot–dash lines). The 
values of the parameter m are shown near the curves. 
 

It is also important to note that, in contrast to the 
case of hypergaussian beams, the subbeam structure is more 
pronounced (in the direction of the medium movement a 
side subbeam is formed). The asymmetry in the temporal 
behavior of the beam intensity distribution is manifested 
already at the path length z = 0.044, for both m = 2 and 
m = 6. A substantial difference for propagation of the 
Gaussian and tubular beams is in the fact that the central 
maximum of the beam intensity formed in the process of 
transformation of the annular beam profile first shifts (e.g., 
at the cross section z = 0.044) in the direction of the 
medium movement (the value of the shift being practically 
independent of the Mach number). In addition the 
asymmetry and the shift of the central intensity maximum 
are well pronounced for a tubular beam (m = 2). The  
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velocity of the medium movement determines the length of 
the path, at which the central zone of the tubular and 
hypertubular beams starts to shift in the direction of the 
medium movement, as well as the width of the central peak 
and of its base. 
 

 
 

 
FIG. 3. Intensity distribution at the cross section z = 0.2 
in a plane ó = y0 for the initially hypertubular beam 
(m = 6) for M = 0 (solid curve) and for M = 0.9 (dot–
dash line). 
 

With further propagation of a hypertubular beam 
(e.g., at the cross section z = 0.1) the formation of a 
subbeam structure occurs similar to that described in Ref. 9, 
the differences are only quantitative. Such a structure 
causes the modulation of density perturbations (the curves 
marked by figure 6 in Fig. 2) which increases with the 
increase of the velocity of the medium movement. As a 
result of the subbeam reflection from corresponding 
inhomogeneities of the medium, the beam profile becomes 
asymmetric (Fig. 3). However, in the two–dimensional case 
there is an asymmetry of the subbeams position relative to 
the central subbeam (compare with slit–shaped beams6):  

there occurs merging of the central subbeam and the next in 
the direction of the medium movement subbeam into a 
single beam. Therefore, in the two-dimensional case the 
nonlinear distortions are observed for lower initial power of 
the optical radiation. 

 
CONCLUSIONS 

 
1. A new method for calculating the effect of thermal 

blooming was proposed for light beams in a subsonic gas flow. 
2. Defocusing of the profiled light beams has been 

investigated. 
3. The analysis of the results of numerical simulations 

has shown that, as in the case of slow medium movement, it is 
advisable to change over to the profiled beams, for which, for 
example, the shift of the beam's center of gravity from the 
initial direction of propagation is much smaller than that of 
Gaussian beams (certain advantages also take place for another 
characteristics of the radiation). 

4. It is shown that propagation of the profiled beams is 
accompanied by the formation of a side subbeam, and that the 
central maximum of the beam shifts in the direction of the 
medium movement at certain path length. 

5. It is also noted that in contrast to slit–shaped beam's, 
the position of the subbeams of the initially two–dimensional 
beam are asymmetric with respect to the central one. 
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