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The statistical characteristics and the probability density of the signal recorded when 
using the method of active interferometry for synthesis of images of small objects observed 
through a turbulent atmosphere are analyzed. Two types of signals are studied. They 
differ by the ratio of the diameter of the illuminating apertures and the correlation radius 
of the phase distortions of the optical field. The dependence of the statistical charac-
teristics on the distance between the illuminating apertures and on the increment of this 
distance is analyzed for both cases. It is shown that the distribution of the signals is 
log-normal. The dependence of the distribution on the dispersion of the phase distortions 
of the optical field and the number of independent spatial and spatial-frequency regions 
of correlation of the recorded signal is investigated. The cases in which the distribution 
approaches a log-normal distribution are determined. 

 
 

It has been suggested that the method of active 
interferometry be used to solve the problem of "seeing" 
through a turbulent atmosphere small distant objects 
from which the reflected signal is too weak for use of 
the traditional processing methods associated with 
telescopic reception. The methods consist essentially 
of illuminating the object by pairs of mutually co-
herent sources, separated by different distances, and 
recording the intensity of the reflected signal inte-
grated over the receiving aperture of the optical sys-
tem.1–3 The obtained resolution is determined by the 
spatial frequency of the interference pattern produced 
by the sources (i.e., by the distance between them) and 
is theoretically limited only by the signal-to-noise 
ratio, while the energy potential is sharply increased 
by using a large energy collector . (or matrix of col-
lectors), which does not need to be fabricated as 
carefully as a telescope, for the receiving optics. 

It is well known that any optical signal which has 
passed through a turbulent atmosphere, including 
after reflection from the surface of the object, is of a 
random character and depends on the fluctuations of 
the index of refraction of the atmosphere. To obtain 
information about the object, it is necessary to use 
methods for processing random signals analogous to 
those employed when observing astronomical objects 
by traditional methods.4 However the form of the 
starting information for different methods of obser-
vation of objects are different, and in order to realize 
any processing algorithm, a statistical model of the 
starting signal must be constructed. 

The condition for observation of a small distant 
object through a turbulent atmosphere means that the 
requirement that the object is isoplanatic is satisfied. 
This is equivalent to locating the layer of turbulent 
atmosphere near the receiving-transmitting system. 

We shall study illumination of the object by two 
collimated beams of light, which are mutually co-
herent, through spatially separated apertures of finite 
size. The field in the plane of the illuminating aper-
tures will have the form 
 

 (1) 
 
where  is the radius vector in this plane, b is the 
vector of spatial separation of the centers of the ap-
ertures, E0 is the intensity of the electric field of the 
illuminating light, () are the atmospheric phase 
distortions, W() is the pupil function of the trans-
mitting aperture, and 
 

 
 

where d is the diameter of the transmitting aperture. 
As shown in Ref. 3, a complicated interference pattern 
forms in the image plane of the object. The interfer-
ence pattern depends not only on the separation b, but 
also on (), as a result of which the recorded integral 
intensity of the reflected signal assumes the form 
 

 
 

 (2) 
 
where 
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Scol is the area of the receiving aperture of the col-
lector,  is the wavelength of illumination, k = 2/, 
R is the distance to the object, r is the radius vector in 
the image plane of the object, E0Q(r) is the distri-
bution of the complex amplitude of the light field in 
the image plane, and ob is the two-dimensional pro-
jection of the object on the image plane. 

In Eq. (2) only the third (cross) term carries 
information. This term can be separated from the 
signal I by different methods, for example, with the 
help of temporal phase modulation,1 whence not only 
the real but also the imaginary part of the product 

*
1 2( ) ( )E r E r  is found. As a result the component of the 

signal carrying information under conditions of a 
turbulent atmosphere assumes the form 
 

 
 

 
 

 
 

 (4) 
 

where F() is the complex Fourier spectrum of the 

image of the object 
2

0( ) ( )I r Q r E  and  is the radius 

vector in the spatial-frequency plane. 
Since 
 

 
 

 
 
then qT(b) becomes 
 

 
 

 (5) 
 

where 2( ) ( ) exp .
2
R

F F i
k

      
 

  

The expression obtained for qT(b) characterizes 
the information-carrying signal for arbitrary ratios of 
the size of the transmitting aperture d and the spatial 
correlation radius of the light field 0, determining the 
"strength" of the fluctuations (). When the aperture 
size d is decreased until the condition d ` 0 is sat-
isfied, the function W() becomes narrower than (), 
and then 
 

 (6) 
 

Adaptive noise of different origin (noise in the 
photodetector, photon noise, errors in determining the 
cross term (4), etc.) is always present in the recording 
and measuring systems together with the measured 
signals. When a complex signal of the type qT(b) is 
formed the noise also becomes complex. Thus the total 
measured signal has the form 
 

 
 

(7) 
 
where n(b) is the complex random (noise) signal. 

We shall first study the statistical characteristics 
of the noise. Based on the central limit theorem, the 
large number of independent sources of noise results in 
the fact that n(b) can be assumed to be Gaussian and 
-correlated with mean ( )n n b  and correlation 

function 
 

 (8) 
 
where N0 is the spectral density of the noise power. 

We shall begin our analysis of the statistical 
characteristics of the signal with the simplest case, 
which is observed when d ` 0. The average value of 
qT(b) will have the form 
 

 (9) 
 
where D(x) is the structure function of the phase 
distortions. The correlation function qT(b) is deter-
mined as follows: 
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whence the variance 2
Tq

  at b1 = b2 can be found: 
 

 
 

It is well known that the function 
1

exp ( )
2

D x
  
 

 

has the characteristic form 5/3
0exp( 3.44 / )x   

(Ref. 5), i.e., it is concentrated in the range 0.x    
Since for a small distant object inequalities of the type 
 

 (11) 
 

where l is the transverse size of the object and 2R/kl 
is the spatial coherence radius of the object field, are 
characteristically satisfied, the function 

 5/3

0exp 3.44 /b   is much narrower than 
kb

F
R

 
 
 

 

and ( )Tq b  is different from zero only for distances 

between the centers of the transmitting apertures 

0b    (Fig. 1). Writing b2 = b1 + b the correla-

tion function can be put into the form 
 

 
 

 (12) 
 

From here and the inequalities (11) it is obvious that it 
is defined in the range of increments b: 0.b    
 

 
 

FIG. 1. The ratio of the Fourier spectrum of the object 
F(b) and the average OTF of the turbulent atmos-

phere exp –( )1
2 Db , forming the signal qT(b). 

 

We shall now analyze the probability density 
qT(b). Since in a turbulent atmosphere phase fluc-
tuations have a normal distribution,6 because (0) and 

(b) are independent quantities their difference is also 
distributed normally, but as a result qT(b) has a 
log-normal distribution6 (Fig. 2): 
 

 (13) 
 

where 2
  is the variance of the phase fluctuations and 

2

12
exp .

2
colS kb k

A F i b
R R R

           
 In the expression (13) 

the condition (0) ( ) 0b     was used. 
 

 
 

FIG. 2. Distribution of the signal qT for different 
variances 2.  

 

We shall now study the general case: the signal 
qT(b) for d ö 0. Its average value will have the form 
 

 
 

 (14) 
 
where 
 

 (15) 
 
is the mutual aberration-free optical transfer function 
(OTF) of the transmitting apertures. Using the ine-
qualities (11) and the definition of D(x), we write 
 

 
 

 (16) 
 
whence it is obvious that the average value is different 
from zero only for distances 0.b d    When the 

condition d p 0 is satisfied, i.e., when the diameters 
of the transmitting apertures are large, the function 
exp[–1/2] D becomes much narrower, as a result of 
which we can write, expanding H0 in a Taylor series at 
the point 6 and retaining the first two terms, 
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 (17) 
 
where 
 

 
 

 
 

To determine the correlation function QT(b1, b2) 
we write, according to Ref. 3, 
 

 
 

 (18) 
 
where 
 

 
 

Writing, as we did in the preceding case, b1 = b, 
b2 = b + b, we can see that QT(b, b) is defined in 
the region b d   and has a maximum at b = 0, 

when Q(b, 0) is the variance 2 :
Tq

  
 

 (19) 
 

For large b, such that ,b d.  in Eq. (18) the 

high-frequency part of 
2

( ) ,F   which oscillates quite 

rapidly, is integrated and in addition the position of 
the minima and maxima alternate at distances much 
shorter them d. For this reason the behavior of the 
function Q in this region as b  increases will be: 

a) monotonically decreasing (as 1/x2) if b d   or 

b) oscillatory and decreasing (as  (sinx/x)2 if 
.b d n  For b d  the low and middle frequency 

parts of 
2

( ) ,F   in which the fluctuations of the 

Fourier spectrum are not so characteristic because of 
the condition that the object be small., are integrated. 
As a result, the smaller ,b  the smaller the oscillations 

as a function of b and the weaker the dependence of 
Q(b, b) on b are, i.e., in this region, like in the case 

studied above, 
2

( , ) ( ) .Q b b F    

Before analyzing the probability distribution of 
the signal qT(b), we shall study the characteristic that 
determines its random nature — the instantaneous 
OTF of the system "transmitting aper-
ture-atmosphere": 
 

 
 

 (20) 
 

It was mentioned above that the phase fluctua-
tions of the optical field in a turbulent atmosphere as 
well as the differences of these fluctuations have a 
normal distribution, as a result of which the entire 
integrand in Eq. (20) has a log-normal distribution. 
The entire OTF H can be expressed approximately by 
the sum 
 

 (21) 
 
where 
 

 
 
IP indicates the integral part of the expression en-

closed in braces, and .
R

x b
k

    

As shown in Ref. 7, the sum of log-normally 
distributed quantities is also a log-normal quantity for 
finite N, so that for (d/0)

2  1 H a log-normal 

distribution at all frequencies .
R

x b
k

    We shall 

now study the signal qT(b) which is a convolution of 
the spectrum ( )F   and the instantaneous OTF H at 
the frequency kb/R: 
 

 (22) 
 

Since ( )F   is the spectrum of a 
two-dimensional' finite function (the object has 
sharp boundaries), determined in the region that is 
poorly resolved by the traditional observational 
systems (the condition that the size of the object is 
small), the domain of ( )F   is much larger than the 

domain of 
R

H b
k

   
 

 which exists only near 

0 ,
R

H b
k

   
 

 i.e., ( )
k

b d
R

    ( ).
k

b d
R

  For 

this reason the region of integration in Eq. (22) is also 
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bounded by the same limits (see Fig. 3). According to 
the sampling theorem, in order to determine the spec-
trum ( )F   of a finite function I(r), for example, in the 
direction , the vector b must be changed in steps of size 
 

 (23) 
 
where l is the size of the object in the direction . The 
condition that the object be small is characterized by 
the fact that when traditional observation methods are 
employed it gives poor resolution of the object (even if 
the atmosphere is not turbulent). This means that when 
telescopes of sufficiently good quality, having input 
pupils with acceptable diameters and not of large ca-
pacity from the technological viewpoint, are used, the 
image of the object will consist only of several resolution 
elements. To illuminate the object, in this case, there is 
no sense in using collimators with a large aperture 
diameter, since one of the advantages of the method of 
active interferometry is that expensive telescopes are not 
used in it. In this connection, the condition that the 
object be small can be characterized by the relation 
 

 (24) 
 

 
 
FIG. 3. The relation between the Fourier spec-
trum of the object F() instantaneous OTF H() 
and the average OTF H0() forming the signal 
qT(b) in a turbulent atmosphere. 

 
whence, using the relation (23), it follows that 
 

 (25) 
 

where b b    in the direction . Thus only several 

(M) independent frequencies of the spectrum ( ),F   

separated from one another by a distance ,b  con-

tribute to the integral in Eq. (22): 
 

 (26) 
 

where 
 

 
 
With the help of Eq. (21) qT(b) can be expressed in 
the form 
 

 (27) 
 
which characterizes the summation of MN(b) inde-
pendent log-normally distributed quantities. For finite 
N = (d/0)

2  1 multiplication by M, under the 
condition (25), will not change much the distribution of 
the sum in qT(b), since according to Mitchell’s work8 the 
log-normal law is very stable with respect to summation 
and approaches the normal law according to the central 
limit theorem extremely slowly. However, if 
N = (d/0)

2 p 1 the summation over the NM re-
alizations may be appreciable. To estimate the number of 
realizations L = NM with which the distribution qT(b) 
can be regarded as being normal, we shall expand the 
probability distribution of the sum of L independent 
random quantities in Hermite polynomials7 

 

 
 

 (28) 
 

where hn(z) are the Hermite polynomials; 1 and 2 are 
the skewness and excess; and, 1/2( ) / ,xz x L x L    

where x is a random quantity, x  is the average value 

of x, and 2
x  is the variance of x, respectively. Since 

the term 1 3
1/2

( )
64
h z
L


 makes the largest contribution to 

fL(z) from the entire sum (after the one), the quantity 
Lcr can be estimated from the condition 
 

 (29) 
 

For a log-normal distribution the skewness7 can 
be determined as 
 

 (30) 
 

Since when the phase differences  = () – ( – 
R/k) are formed phases which are not correlated 
with one another are actually calculated (and the 
transmitting apertures are separated by the vector b, 
for which the condition b > 0 is satisfied), we have 
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2 2.     Since the Hermite polynomial 

h3(z) = z – 3z, being multiplied by exp(–z2/2), 
makes an appreciable contribution for small and 
middle values of z (for large z the product approaches 
zero as exp(–z2/2)), to calculate Lcr we shall set 
h3(z)  1. Table I gives the estimates of the values for 
different variances of the phase 2

  and the corre-

sponding limiting values 2
0( / )crd   for different 

values of 2(2 / ) .M d b   
 

TABLE I. 
 

 
 

One can see from Table I that the variance of the 
phase fluctuations 2

  has the strongest effect on Lcr 

and on the limiting ratio of the area of the transmitting 
aperture d2 and the area of the cell of spatial coherence 
of the phase distortion 2

0.  The smaller the variance, 

the more rapidly q(b) becomes normally distributed. 
For weak fluctuations (  0.1 — 0.2) the dis-
tribution of q(b) can be regarded as normal, even for 
relatively small ratios (d/0)

2; this agrees with the 
results of Ref. 8. 

In a turbulent atmosphere, however, the variance 
of the phase usually reaches large values   (10)

2,6 
as a result of which for any acceptable ratios (d/0)

2 p 
1 the signal qT(b) has a log-normal distribution. Thus 
the random signal qT(b) consists of two components:  

an information-carrying signal qT(b) and noise n(b). 
The noise n(b) is normally distributed and -correlated 
with spectral power density N0. The signal qT(b) for 
(d/0)

2 ` 1 is distributed log-normally with zero 
mean for real values | 0b    and correlation function 

(10) and variance 
 

 
 

For (d/0) ö 1 the signal qT(b) is distributed 
log-normally for the values   0.2, while for 
(d/0)

2 p 1 the limit  at which the distribution 
becomes normal increases approximately up to 
0.5–0.7. In a turbulent atmosphere with average and 
strong fluctuations Of the phase the distribution is 
log-normal for virtually all values (d/0)

2 p 1. 
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