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This paper describes a technique for retrieving the size spectrum of an ensemble of 
aspherical particles from their preferential spatial orientation. Two basic mechanisms of 
particle orientation are considered. One of them has to do with aerodynamic forcing of 
particles moving in a viscous medium. The other stems from the interaction between the 
induced particle dipole moment and the electric field of the incident radiation. Quan-
titative estimates are presented for an ensemble of ellipsoidal particles. 

 
 

The movement of particles forced by light pres-
sure, photophoresis and photoreactive forces in a 
powerful laser beam has been described in a number of 
papers.1–3 However, these studies failed to notice the 
orienting effect of such radiation fields upon non-
spherical particles. 

The present paper considers several mechanisms of 
movement of aspherical particles immersed in a me-
dium, resulting in their preferential spatial orienta-
tion, and comments, on the applicability of that phe-
nomenon to the task of retrieving the aerosol micro-
structure from data of nonlinear optical measurements. 

It is well known from hydrodynamics that a 
torque affects a body of asymmetrical shape in the 
process of its translational movement through a liquid 
or gaseous medium, this torque tending to orient such 
a body broad side the direction of movement.4 

In particular, a rotational ellipsoid with semi-axes 
a and b (a > b) is forced by a torque M, which tends 
to turn its broad side perpendicular to the flow4 

 

 (1) 
 
where u is the flow velocity relative to the ellipsoid; m 
is the medium density;  is the angle between the 
direction of flow and the rotation axis of the ellipsoid; 
 is a constant. 

We then obtain for a rotational ellipsoid 
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The equation of rotational motion of the particle 
when that particle is affected by the torque (1) has the 
following form: 
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  is the density of the material 

the ellipsoid is made of. 
Equation (3) is the equation of a pendulum. If we 

assume the following initial condition: (0) = 0, 

0
d
dt

  for  = 0, then the oscillation period, de-

scribed by Eq. (3), can be calculated from the fol-
lowing expression5: 
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 is the incomplete elliptical integral of 

the first kind, and k = sin 0/2. 
Note that 

 

 
 
i.e., it doesn't strongly depend on 0. 

We take 
1
4orient T   for the orientation time, 

since it is exactly the time required for the angle  to 
change from its initial value 0 to zero. The following 
expression is obtained for orient: 
 

 (5) 
 

The random movement of the aerosol particles in 
the medium results from their Brownian motion and 
from the eddy diffusion of the medium. While the 
velocity Brownian motion for a given particle depends 



Yu.D. Kopytin et al. Vol. 3,  No. 10 /October  1990/ Atmos. Oceanic Opt.  999 
 

 

on the medium temperature alone, the eddy mixing 
intensity in air j, being a measure of the pulsation 
component of the wind velocity varies over a wide 
range (from 0.002 to 0.20) in the atmosphere.6 

The particle acquires some directional movement 
with respect to the medium due to the gravitational 
force and the light pressure.1 Also the radiative and 
light reaction forces affect the particle in a laser 
radiation field.2 

The particle velocity due to the gravitational force 
in a viscous medium exceeds the rms pulsation velocity 
of the average wind velocity uw for particles of size 
 

 (6) 
 
where g is the free-fall acceleration;  is the medium 
dynamic viscosity. 

For uw = 1 m/s, j = 0.1,  = 103 kg/m3, 
m = 1.2 kg/m2,  = 1.8  10–5 kg/(m  s), and 
g = 10 m/s, r > 28 m. 

Thus particles of arbitrary shape but of an ef-
fective size of several dozen microns begin to move 
directionally through the atmosphere, and because of 
aerodynamic forcing should orient with their maxi-
mum cross section facing the direction of their 
movement. This effect is indeed observed for falling 
snowflakes and ice crystals.7,8 

A particle, forced by light pressure, reaches a 
certain stationary velocity u, which may be easily 
computed from the Stokes equation. The velocity u 
exceeds the Brownian velocity of the particle if the 
power density J of the forcing radiation exceeds a 
certain threshold value, given by the expression9 
 

(7) 
 
where KLP is the light pressure cross section of the 
particle, k is the Boltzmann constant, T is the medium 
temperature, c is the speed of light, pulse is the du-
ration of the laser pulse. 

For the equation of a pendulum and relation (5) 
to be applicable to the calculations of the particle 
orientation time in a laser beam (due to aerodynamic 
forcing) the time the particle takes to reach its sta-
tionary velocity stat should be much less than that 
calculated using Eq. (5). 

It can be shown that 
22

,
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 i.e., it depends 

on the properties of the particle and the medium. 
Calculations show that the equation of a pen-

dulum is applicable to aerosol particles with r < 5 m 
in air if their density is  > 103 kg/m3. The process of 
orientation for coarse aerosol particles is described by 
much more complex differential equations. 

For particles with r < 5 m suspended in air we 
obtain following expression for their orientation time: 
 

 (8) 
 

where  = a/b is their asphericity parameter. 
Figure 1 shows a graph of the orientation time vs 

the effective size of the rotational ellipsoid for  = 2, 
3, 5. The radiation power density was taken to be 
J = 5  105 W/cm2 at  = 10.6 m. It is important 
to note that the orientation time is observed to increase 
as the effective size of the aspherical particles de-
creases. This effect is due to a decrease in the light 
pressure cross section for smaller particles.10 
 

 
 

FIG. 1. Orientation time for three types of el-
lipsoids:  = 2 (solid line),  = 5 (marked line), 
 = 5 (dashed line), when there is the aerody-
namic effect. The radiation parameters: 
 = 10.6 m and J = 5  105 W/cm2. 

 

Another particle-orienting mechanism plays an 
important role. Along with the orientation of 
aspherical particles as a result of aerodynamic forcing 
by the moving medium, such particles may be oriented 
in an external homogeneous electric field. The cause of 
such a phenomenon lies in the interaction between the 
dipole moment of a particle polarized in an external 
field and the field itself. The torque M acting upon a 
rotational ellipsoid situated in a homogeneous electric 
field E is equal to11 
 

 (9) 
 

where  is the angle between the field E and the 
ellipsoid symmetry axis,  is the dielectric constant of 
the ellipsoid, n is the depolarization coefficient along 
the ellipsoid axis, and V is the ellipsoid volume. 

The depolarization coefficient n depends on the 
ellipsoidal shape alone, and its numerical values for 
various ellipsoidal shapes may be found in Ref. 12. 
The total torque M is oriented so as to turn the 
prolate axis of the ellipsoid (n < 1/3) parallel to 
the field, and that of the oblate one 
(n > 1/3) — perpendicular to that field. 

Carrying out similar operations with the solution 
of the equation of a pendulum, with the torque (9), we 
obtain, as before, the following expression for the 
particle orientation time: 
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 (10) 
 
where 
 

 
 
The calculations yield an orientation time 
t = 3.8  10–2 s for E = 102 V/m,  = 20, 
 = 103 kg/m3, r = 5 m. 

If the fields vary with time and the particle size is 
much less than the radiation wavelength, the orien-
tation time for such particles may be described by 
expression (10), but the frequency dependence of the 
particle dielectric constant must then be taken into 
account, and 2E  (the squared field average over the 

oscillation period) must be substituted into that ex-
pression in place of E2. 

Figure 2 shows the dependence of such an ori-
entation time for an ellipsoid with semi-axes ratio 
a/b = 2 on the effective size of the ellipsoid for 
radiation power density J = 5  109 W/m2. 

Note that the orientation time of the particle due 
to aerodynamic forcing orient  1/J, while that due to 
the external electric field 1/ ,t J  so that these 
orientation times become comparable at a radiation 
power density of 
 

(11) 
 

Calculations show that J = 1011 W/m2 for 
 = 1.8  10–5 kg/(m  s), r = 2 m, n = 0.25, 
 = 2, m = 1.3 kg/m3, and KLP = 0.1. 

Hence the torque due to aerodynamic forcing may 
be neglected, compared to that from the external 
electric field, for every conceivable radiation power 
density. Note that a similar situation is also observed 
in other, more viscous media, e.g., water. 
 

 
 
FIG. 2. Orientation time for electric dipole in-
teraction for an ellipsoid with  = 2. Radiation 
power density J = 5  10–5 W/cm2. 

 

It should be recalled that expression (10) is valid 
only for particles of size much less than the forcing 
radiation wavelength r ` . 

The cases r   and r p  are not considered in 
our study. 

The phenomenon of particle orientation in a laser 
radiation beam allows the possibility of retrieving the 
aspherical particle size spectrum from the observed 
dynamics of the aerosol extinction. 

Not allowing for the dependence of the particle 
scattering properties on the polarization state of the 
radiation, an expression which describes the time 
dependence of the aerosol extinction coefficient reads 
 

 (12) 
 
where KR(r, m) is the efficiency factor for the ran-
domly oriented particles, KN(r, m) is that factor for 
particles oriented with their broad face perpendicular 
to the laser beam; F(r) is the size distribution of these 
particles; r(t) is the size of the particles that have 
already been oriented as of the time t; r1 is the particle 
minimal size. 

Differentiating Eq. (12) with respect to time, we 
obtain 
 

 
 
 (13) 
 

The calculational data on the extinction effi-
ciency factor for both the prolate and the three oblate 
rotational ellipsoids ( = 2, 3, 5) for m = 1.33 are 
presented in Refs. 13 and 14. 

Figure 3 demonstrates the dependence of 1/(t) 
for an ellipsoid with  = 5 for three different radiation 
power densities: 105, 5  105, and 4  104 W/cmZ 
( = 10.6 m), obtained taking relation (10) into 
account. 

To test algorithm (13) for F(r) both the direct and 
inverse problems were solved for a set of spheroids 
with  = 5, m = 1.33, and  = 1 g/cm3 within the 
size range 1.5–14 m, described by the distribution 
function 
 

 (14) 
 
where d, k1, k2, and  are fixed constants, and rm is 
the modal radius. 

The particles were assumed to be irradiated at a 
power density of 4  104 W/cm2 and to be sensed by a 
weak beam with  = 5 m. It was also assumed that the 
particles orient as a result of forcing by the external  
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electric field alone. We used the single-parameter dis-
tribution function (14), which does not account for the 
particles’ initial orientation (i.e., for the angle 0 in 
Eq. (4)). Such a simplification is permissible because 
the orientation time depends only weakly on 0, as can 
be seen from Eq. (4), and we can take 0 = /4 for all 
the particles.  
 

 
 

FIG. 3. The function (t) for ellipsoids with  = 5 
at three different radiation power densities: 
J = 105W/cm2 (solid line), J = 5  105W/cm2 
(dashed line), and J = 4  105W/cm2 (marked 
line). 

 
 

FIG. 4. Actual (solid line) and calculated 
(dashed line) particle size spectra. 

 

Figure 4 shows the "actual" (14) and computed 
(13) distribution functions, obtained for d = 2.373, 
k1 = 6,  = 3/2, and k2 = 1. They are in satisfactory 
agreement with each other. The calculations were per-
formed on an ES-1066 computer. 

Although our calculations cover only certain 
prescribed rotational ellipsoids, the above-noted 
regularities can, to a certain extent, be found in all 
other aspherical particles. 
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